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Supervised vs. Unsupervised Learning

• In supervised learning, the training data is a set of 
pairs 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛 , where 𝑥𝑥𝑛𝑛 is an example input, and 𝑦𝑦𝑛𝑛
is the target output for that input.
– The goal is to learn a general function H(𝑥𝑥) that maps 

inputs to outputs.
– The majority of the methods we have covered this 

semester fall under the category of supervised learning.

• In unsupervised learning, the training data is a set of 
values 𝑥𝑥𝑛𝑛.
– There is no associated target value for any 𝑥𝑥𝑛𝑛.
– Because of that, data values 𝑥𝑥𝑛𝑛 are called unlabeled data.
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• The goal in supervised learning is regression or classification.
• The goal in unsupervised learning is to discover hidden structure

in the data.
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• You may have heard of some methods that do different types of 
unsupervised learning.
– PCA (principal component analysis): it learns how to represent high-

dimensional vectors using low-dimensional vectors.
– SVD (singular value decomposition): it learns how to represent matrix data 

as dot products of low-dimensional vectors. An example of such matrix 
data is movie ratings by users (one row per user, one column per movie, 
most values left unspecified), where we can use SVD to build a model that 
predicts how much a specific user will like a specific movie.

• We will cover some of these methods towards the end of the 
semester, as optional, non-graded material.
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Clustering

• The goal of clustering is 
to separate the data into 
coherent subgroups.
– Data within a cluster 

should be more similar to 
each other than to data in 
other clusters.

• For example:
– Can you identify clusters 

in this dataset?
– How many? Which ones?
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Clustering

• The goal of clustering is 
to separate the data into 
coherent subgroups.
– Data within a cluster 

should be more similar to 
each other than to data in 
other clusters.

• For example:
– Can you identify clusters 

in this dataset?
– Many people would 

identify three clusters.
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Clustering

• Some times the clusters 
may not be as obvious.

• Identifying clusters can 
be even harder with 
high-dimensional data.
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Applications of Clustering

• Finding subgroups of similar items is useful in many 
fields:
– In biology, clustering is used to identify relationships 

between organisms, and to uncover possible evolutionary 
links.

– In marketing, clustering is used to identify segments of the 
population that would be specific targets for specific 
products.

– For anomaly detection, anomalous data can be identified 
as data that cannot be assigned to any of the "normal" 
clusters.

– In search engines and recommender systems, clustering 
can be used to group similar items together. 8



K-Means Clustering

• K-means clustering is a
simple and widely used
clustering method.

• First, clusters are initialized
by assigning each object 
randomly to a cluster.

• Then, the algorithm alternates between:
– Re-assigning objects to clusters based on distances from 

each object to the mean of each current cluster.
– Re-computing the means of the clusters.

• The number of clusters must be chosen manually.
9



K-Means Clustering:
Initialization

• To start the iterative 
process, we first need
to provide some initial
values.

• We manually pick the number of clusters.
– In the example shown, we pick 3 as the number of clusters.

• We randomly assign objects to clusters.
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K-Means Clustering:
Initialization

• To start the iterative 
process, we first need
to provide some initial
values.

• We manually pick the number of clusters.
– In the example shown, we pick 3 as the number of clusters.

• We randomly assign objects to clusters.
• In the example figure, cluster membership is 

indicated with color.
– There is a red cluster, a green cluster, and a brown cluster. 11



K-Means Clustering:
Initialization

• To start the iterative 
process, we first need
to provide some initial
values.

• We manually pick the number of clusters.
– In the example shown, we pick 3 as the number of clusters.

• We randomly assign objects to clusters.
• The means of these random clusters are shown with 

× marks.
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K-Means Clustering:
Main Loop

• The main loop alternates
between:
– Computing new assignments

of objects to clusters, based 
on distances from each object 
to each cluster mean.

– Computing new means for the clusters, using the current 
cluster assignments.

• At this point, we have provided some random initial 
assignments of points to clusters.

• What is the next step? 13



K-Means Clustering:
Main Loop

• The main loop alternates
between:
– Computing new assignments

of objects to clusters, based 
on distances from each object 
to each cluster mean.

– Computing new means for the clusters, using the current 
cluster assignments.

• The next step is to compute new assignments of 
objects to clusters.
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K-Means Clustering:
Main Loop

• The main loop alternates
between:
– Computing new assignments

of objects to clusters, based 
on distances from each object 
to each cluster mean.

– Computing new means for the clusters, using the current 
cluster assignments.

• The next step is to compute new assignments of 
objects to clusters.
– The figure shows the new assignments.
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K-Means Clustering:
Main Loop

• The main loop alternates
between:
– Computing new assignments

of objects to clusters, based 
on distances from each object 
to each cluster mean.

– Computing new means for the clusters, using the current 
cluster assignments.

• Next, we move on to compute the new means.
– Again, the new means are shown with × marks.
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K-Means Clustering:
Main Loop

• The main loop alternates
between:
– Computing new assignments

of objects to clusters, based 
on distances from each object 
to each cluster mean.

– Computing new means for the clusters, using the current 
cluster assignments.

• Next, we compute again new assignments.
– We end up with the same assignments as before.
– When this happens, we can terminate the algorithm.
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• First step: ???
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• First step: randomly assign points to the three 
clusters.
– We see the random assignments and the resulting means 

for the three clusters.
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• Main loop, iteration 1: recompute cluster 
assignments.
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• Main loop, iteration 2: recompute cluster 
assignments.
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• Main loop, iteration 3: recompute cluster 
assignments.
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• Main loop, iteration 4: recompute cluster 
assignments.
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• Main loop, iteration 5: recompute cluster 
assignments.
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K-Means Clustering:
Another Example

• Here is a more difficult
example, where there
are no obvious clusters.

• Again, we specify 
manually that we want to 
find 3 clusters.

• Main loop, iteration 6: recompute cluster 
assignments.
– The cluster assignments do not change, compared to 

iteration 5, so we can stop.
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K-Means Clustering - Theory

• Let 𝑿𝑿 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 be our set of points.
– We assume that 𝑿𝑿 is a subset of 𝐷𝐷-dimensional vector 

space ℝ𝐷𝐷.
– Thus, each 𝑥𝑥𝑛𝑛 is a 𝐷𝐷-dimensional vector.

• Let 𝑺𝑺1, 𝑺𝑺2, … ,𝑺𝑺𝐾𝐾 be some set of clusters for 𝑿𝑿.
– The union of all clusters should be 𝑿𝑿.

�
𝑘𝑘=1

𝐾𝐾

𝑺𝑺𝑘𝑘 = 𝑿𝑿

– The intersection of any two clusters should be empty.

∀𝑗𝑗,𝑘𝑘: 𝑺𝑺𝑘𝑘 ∩ 𝑺𝑺𝑘𝑘= ∅
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K-Means Clustering - Theory

• Let 𝑿𝑿 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 be our set of points.
• Let 𝑺𝑺1, 𝑺𝑺2, … ,𝑺𝑺𝐾𝐾 be some set of clusters for 𝑿𝑿.
• Let 𝜇𝜇𝑘𝑘 be the mean of all elements of 𝑺𝑺𝑘𝑘.
• The error measure for such a set of clusters is 

defined as:

𝐸𝐸 𝑺𝑺1, 𝑺𝑺2, … ,𝑺𝑺𝐾𝐾 = �
𝑘𝑘=1

𝐾𝐾

�
𝑥𝑥𝑛𝑛∈𝑺𝑺𝑘𝑘

𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑘𝑘 2

• The optimal set of clusters is the one that minimizes 
this error measure. 27

Euclidean distance
between 𝑥𝑥𝑛𝑛 and 𝜇𝜇𝑘𝑘



K-Means Clustering - Theory

• The error measure for a set of clusters 𝑺𝑺1,
𝑺𝑺2, … ,𝑺𝑺𝐾𝐾 is defined as:

𝐸𝐸 𝑺𝑺1, 𝑺𝑺2, … ,𝑺𝑺𝐾𝐾 = �
𝑘𝑘=1

𝐾𝐾

�
𝑥𝑥𝑛𝑛∈𝑺𝑺𝑘𝑘

𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑘𝑘 2

• The optimal set of clusters is the one that minimizes 
this error measure.

• Finding the optimal set of clusters is NP-hard.
– Solving this problem takes time 𝑂𝑂 𝑁𝑁𝐾𝐾𝐾𝐾+1 , where:

• 𝑁𝑁 is the number of objects.
• 𝐷𝐷 is the number of dimensions.
• 𝐾𝐾 is the number of clusters. 28



K-Means Clustering - Theory

• The error measure for a set of clusters 𝑺𝑺1,
𝑺𝑺2, … ,𝑺𝑺𝐾𝐾 is defined as:

𝐸𝐸 𝑺𝑺1, 𝑺𝑺2, … ,𝑺𝑺𝐾𝐾 = �
𝑘𝑘=1

𝐾𝐾

�
𝑥𝑥𝑛𝑛∈𝑺𝑺𝑘𝑘

𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑘𝑘 2

• The iterative algorithm we described earlier 
decreases the error 𝐸𝐸 at each iteration.

• Thus, this iterative algorithm converges.
– However, it only converges to a local optimum.
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K-Medoid Clustering

• The main loop in k-means clustering is:
– Computing new assignments of objects to clusters, based 

on distances from each object to each cluster mean.
– Computing new means for the clusters, using the current 

cluster assignments.

• K-medoid clustering is a variation of k-means, where 
we use medoids instead of means.

• The main loop in k-medoid clustering is:
– Computing new assignments of objects to clusters, based 

on distances from each object to each cluster medoid.
– Computing new medoids for the clusters, using the current 

cluster assignments. 30



K-Medoid Clustering

• To complete the definition of k-medoid clustering, 
we need to define what a medoid of a set is.

• Let 𝑺𝑺 be a set, and let 𝐹𝐹 be a distance measure, that 
evaluates distances between any two elements of 𝑺𝑺.

• Then, the medoid 𝑚𝑚𝑺𝑺 of 𝑺𝑺 is defined as: 

𝑚𝑚𝑺𝑺 = argmin
𝑠𝑠∈𝑺𝑺

�
𝑥𝑥∈𝑺𝑺

𝐹𝐹(𝑠𝑠, 𝑥𝑥)

• In words, 𝑚𝑚𝑺𝑺 is the object in 𝑺𝑺 with the smallest sum 
of distances to all other objects in 𝑺𝑺.
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K-Medoid vs. K-means

• K-medoid clustering can be applied on non-vector 
data with non-Euclidean distance measures.

• For example:
– K-medoid can be used to cluster a set of time series 

objects, using DTW as the distance measure.
– K-medoid can be used to cluster a set of strings, using the 

edit distance as the distance measure.

• K-means cannot be used in such cases.
– Means may not make sense for non-vector data. 
– For example, it does not make sense to talk about the 

mean of a set of strings. However, we can define (and find) 
the medoid of a set of strings, under the edit distance. 32



K-Medoid vs. K-means

• K-medoid clustering can be applied on non-vector 
data with non-Euclidean distance measures.

• K-medoid clustering is more robust to outliers.
– A single outlier can dominate the mean of a cluster, but it 

typically has only small influence on the medoid.

• The K-means algorithm can be proven to converge to 
a local optimum.
– The k-medoid algorithm may not converge.
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EM for Clustering
• Another clustering method is 

based on an algorithm called
Expectation-Maximization (EM).

• The EM algorithm models
the data as being generated 
by a mixture of Gaussians.
– I.e., by multiple Gaussians.

• The EM algorithm estimates the parameters (mean and 
covariance matrix) of each Gaussian.

• Each Gaussian defines a cluster.
• Key difference from K-means: here, membership to a cluster is 

typically partial.
– The algorithm assigns a “membership” weight between each data 

point and each Gaussian. 34



Review of Gaussians
• Review: a 1D normal distribution is defined as:

𝑁𝑁 𝑥𝑥 =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

• To define a Gaussian, we need to specify just two 
parameters:
– μ, which is the mean (average) of the distribution.
– σ, which is the standard deviation of the distribution.
– Note: σ2 is called the variance of the distribution.
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Estimating a Gaussian

• In one dimension, a Gaussian is defined like this:

𝑁𝑁 𝑥𝑥 =
1

𝜎𝜎 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇 2

2𝜎𝜎2

• Given a set of n real numbers x1, …, xn, we can easily find the 
best-fitting Gaussian for that data.

• The mean μ is simply the average of those numbers:

𝜇𝜇 =
1
𝑛𝑛
�
1

𝑛𝑛

𝑥𝑥𝑖𝑖

• The standard deviation σ is computed as:

𝜎𝜎 =
1

𝑛𝑛 − 1
�
1

𝑛𝑛

(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
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Estimating a Gaussian

• Fitting a Gaussian to data does not guarantee that 
the resulting Gaussian will be an accurate 
distribution for the data.

• The data may have a distribution that is very 
different from a Gaussian.
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Example of Fitting a Gaussian

38

The blue curve 
is a density 
function F such 
that:
- F(x) = 0.25 

for 1 ≤ x ≤ 3.
- F(x) = 0.5 for 

7 ≤ x ≤ 8.

The red curve is 
the Gaussian fit 
G to data 
generated using 
F.

Presenter
Presentation Notes
Gaussian: mean = 4.75, std = 2.7876



Mixtures 
of Gaussians

39

• This figure shows our previous example, where we fitted a 
Gaussian into some data, and the fit was poor.

• Overall, Gaussians have attractive properties:
– They require learning only two numbers (μ and σ), and thus require few 

training data to estimate those numbers.

• However, for some data, Gaussians are just not good fits.



Mixtures 
of Gaussians

40

• Mixtures of Gaussians are oftentimes a better solution.
– They are defined in the next slide.

• They still require relatively few parameters to estimate, and 
thus can be learned from relatively small amounts of data.

• They can fit pretty well actual distributions of data.



Mixtures of Gaussians

• Suppose we have k Gaussian distributions Ni.
• Each Ni has its own mean μi and std σi.
• Using these k Gaussians, we can define a Gaussian 

mixture M as follows:

𝑀𝑀 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖 𝑥𝑥

• Each wi is a weight, specifying the relative 
importance of Gaussian Ni in the mixture.
– Weights wi are real numbers between 0 and 1.
– Weights wi must sum up to 1, so that the integral of M is 1.41



Mixtures of Gaussians – Example

42

The blue and green 
curves show two 
Gaussians.

The red curve shows 
a mixture of those 
Gaussians.
w1 = 0.9.
w2 = 0.1.

The mixture looks a 
lot like N1, but is 
influenced a little by 
N2 as well.



Mixtures of Gaussians – Example
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The blue and green 
curves show two 
Gaussians.

The red curve shows 
a mixture of those 
Gaussians.
w1 = 0.7.
w2 = 0.3.

The mixture looks 
less like N1
compared to the 
previous example, 
and is influenced 
more by N2.



Mixtures of Gaussians – Example

44

The blue and green 
curves show two 
Gaussians.

The red curve shows 
a mixture of those 
Gaussians.
w1 = 0.5.
w2 = 0.5.

At each point x, the 
value of the mixture 
is the average of 
N1(x) and N2(x).



Mixtures of Gaussians – Example
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The blue and green 
curves show two 
Gaussians.

The red curve shows 
a mixture of those 
Gaussians.
w1 = 0.3.
w2 = 0.7.

The mixture now 
resembles N2 more 
than N1.



Mixtures of Gaussians – Example
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The blue and green 
curves show two 
Gaussians.

The red curve shows 
a mixture of those 
Gaussians.
w1 = 0.1.
w2 = 0.9.

The mixture now is 
almost identical to 
N2(x).



Learning a Mixture of Gaussians

• Suppose we are given training data x1, x2, …, xn.
• How can we fit a mixture of Gaussians to this data?
• This will be the topic of the next few slides.
• We will learn a very popular machine learning 

algorithm, called the EM algorithm.
– EM stands for Expectation-Maximization.

• Step 0 of the EM algorithm: pick k manually.
– Decide how many Gaussians the mixture should have.
– Any approach for choosing k automatically is beyond the 

scope of this class.
47



Learning a Mixture of Gaussians
• Suppose we are given training data x1, x2, …, xn.
• We want to model P(x) as a mixture of Gaussians.
• Given k, how many parameters do we need to estimate in 

order to fully define the mixture?
• Remember, a mixture M of k Gaussians is defined as:

• For each Ni, we need to estimate three numbers:
– wi, μi, σi.

• So, in total, we need to estimate 3*k numbers.

48

𝑀𝑀 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝑤𝑤𝑖𝑖
1

𝜎𝜎𝑖𝑖 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇𝑖𝑖
2

2𝜎𝜎𝑖𝑖2



Learning a Mixture of Gaussians
• Suppose we are given training data x1, x2, …, xn.
• A mixture M of k Gaussians is defined as:

• For each Ni, we need to estimate wi, μi, σi.

• Suppose that we knew for each xj, that it belongs to one and 
only one of the k Gaussians.

• Then, learning the mixture would be a piece of cake:
• For each Gaussian Ni:

– Estimate μi, σi based on the examples that belong to it.
– Set wi equal to the fraction of examples that belong to Ni. 49

𝑀𝑀 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝑤𝑤𝑖𝑖
1

𝜎𝜎𝑖𝑖 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇𝑖𝑖
2

2𝜎𝜎𝑖𝑖2



Learning a Mixture of Gaussians
• Suppose we are given training data x1, x2, …, xn.
• A mixture M of k Gaussians is defined as:

• For each Ni, we need to estimate wi, μi, σi.

• However, we have no idea which mixture each xj belongs to.
• If we knew μi and σi for each Ni, we could probabilistically

assign each xj to a component. 
– “Probabilistically” means that we would not make a hard assignment, 

but we would partially assign xj to different components, with each 
assignment weighted proportionally to the density value Ni(xj).

50

𝑀𝑀 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝑤𝑤𝑖𝑖𝑁𝑁𝑖𝑖 𝑥𝑥 = �
𝑖𝑖=1

𝑘𝑘

𝑤𝑤𝑖𝑖
1

𝜎𝜎𝑖𝑖 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇𝑖𝑖
2

2𝜎𝜎𝑖𝑖2



Example of Partial Assignments
• Using our previous 

example of a mixture:
• Suppose xj = 6.5.
• How do we assign 6.5 to 

the two Gaussians?
• N1(6.5) = 0.0913.
• N2(6.5) = 0.3521.
• So:

– 6.5 belongs to N1 by 
0.0913

0.0913+0.3521
= 20.6%.

– 6.5 belongs to N2 by 
0.3521

0.0913+0.3521
= 79.4%.
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The Chicken-and-Egg Problem

• To recap, fitting a mixture of Gaussians to data 
involves estimating, for each Ni, values wi, μi, σi.

• If we could assign each xj to one of the Gaussians, we 
could compute easily wi, μi, σi.
– Even if we probabilistically assign xj to multiple Gaussians, 

we can still easily wi, μi, σi, by adapting our previous 
formulas. We will see the adapted formulas in a few slides.

• If we knew μi, σi and wi, we could assign (at least 
probabilistically) xj’s to Gaussians.

• So, this is a chicken-and-egg problem. 
– If we knew one piece, we could compute the other. 
– But, we know neither. So, what do we do? 52



On Chicken-and-Egg Problems
• Such chicken-and-egg problems occur frequently in AI.
• Surprisingly (at least to people new in AI), we can easily solve 

such chicken-and-egg problems.
• Overall, chicken and egg problems in AI look like this:

– We need to know A to estimate B.
– We need to know B to compute A.

• There is a fairly standard recipe for solving these problems.
• Any guesses?

53



On Chicken-and-Egg Problems
• Such chicken-and-egg problems occur frequently in AI.
• Surprisingly (at least to people new in AI), we can easily solve 

such chicken-and-egg problems.
• Overall, chicken and egg problems in AI look like this:

– We need to know A to estimate B.
– We need to know B to compute A.

• There is a fairly standard recipe for solving these problems.
• Start by giving to A values chosen randomly (or perhaps non-

randomly, but still in an uninformed way, since we do not 
know the correct values).

• Repeat this loop:
– Given our current values for A, estimate B.
– Given our current values of B, estimate A.
– If the new values of A and B are very close to the old values, break. 54



The EM Algorithm - Overview
• We use this approach to fit mixtures of Gaussians to data.
• This algorithm, that fits mixtures of Gaussians to data, is called 

the EM algorithm (Expectation-Maximization algorithm).
• Remember, we choose k (the number of Gaussians in the 

mixture) manually, so we don’t have to estimate that.
• To initialize the EM algorithm, we initialize each μi, σi, and wi. 

Values wi are set to 1/k. We can initialize μi, σi in different ways:
– Giving random values to each μi.
– Uniformly spacing the values given to each μi.
– Giving random values to each σi.
– Setting each σi to 1 initially.

• Then, we iteratively perform two steps.
– The E-step.
– The M-step. 55



The E-Step
• E-step. Given our current estimates for μi, σi, and wi:

– We compute, for each i and j,  the probability pij = P(Ni | xj): 
the probability that xj was generated by Gaussian Ni.

– How? Using Bayes rule.

𝑝𝑝𝑖𝑖𝑖𝑖 = P(𝑁𝑁𝑖𝑖|𝑥𝑥𝑗𝑗) = 𝑃𝑃 𝑥𝑥𝑗𝑗 | 𝑁𝑁𝑖𝑖 ∗𝑃𝑃(𝑁𝑁𝑖𝑖)
𝑃𝑃(𝑥𝑥𝑗𝑗)

= 𝑁𝑁𝑖𝑖 𝑥𝑥𝑗𝑗 ∗ 𝑤𝑤𝑖𝑖

𝑃𝑃(𝑥𝑥𝑗𝑗)

𝑁𝑁𝑖𝑖 𝑥𝑥𝑗𝑗 =
1

𝜎𝜎𝑖𝑖 2𝜋𝜋
𝑒𝑒−

𝑥𝑥−𝜇𝜇𝑖𝑖
2

2𝜎𝜎𝑖𝑖2

𝑃𝑃 𝑥𝑥𝑗𝑗 = �
𝑖𝑖′=1

𝑘𝑘

𝑤𝑤𝑖𝑖′𝑁𝑁𝑖𝑖′ 𝑥𝑥𝑗𝑗
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The M-Step: Updating μi and σi
• M-step. Given our current estimates of pij, for each i, j: 

– We compute  μi and σi for each Ni, as follows:
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𝜇𝜇𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗]
∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

𝜎𝜎𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖 2]

∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

𝜇𝜇 =
1
𝑛𝑛
�
1

𝑛𝑛

𝑥𝑥𝑗𝑗 𝜎𝜎 =
1

𝑛𝑛 − 1
�
𝑗𝑗=1

𝑛𝑛

(𝑥𝑥𝑗𝑗 − 𝜇𝜇)2

– To understand these formulas, it helps to compare them 
to the standard formulas for fitting a Gaussian to data:



The M-Step: Updating μi and σi

• Why do we take weighted averages at the M-step?
• Because each xj is probabilistically assigned to multiple Gaussians.
• We use 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑃𝑃 𝑁𝑁𝑖𝑖|𝑥𝑥𝑗𝑗 as weight of the assignment of xj to Ni.
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𝜇𝜇𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗]
∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

𝜎𝜎𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖 2]

∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

𝜇𝜇 =
1
𝑛𝑛
�
1

𝑛𝑛

𝑥𝑥𝑗𝑗 𝜎𝜎 =
1

𝑛𝑛 − 1
�
𝑗𝑗=1

𝑛𝑛

(𝑥𝑥𝑗𝑗 − 𝜇𝜇)2

– To understand these formulas, it helps to compare them 
to the standard formulas for fitting a Gaussian to data:



The M-Step: Updating wi

• At the M-step, in addition to updating μi and σi, we also 
need to update wi, which is the weight of the i-th
Gaussian in the mixture.

• The formula shown above is used for the update of wi.
– We sum up the weights of all objects for the i-th Gaussian.
– We divide that sum by the sum of weights of all objects for all 

Gaussians.
– The division ensures that ∑𝑖𝑖=1𝑘𝑘 𝑤𝑤𝑖𝑖 = 1.
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𝑤𝑤𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

∑𝑢𝑢=1𝑘𝑘 ∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑢𝑢𝑗𝑗



The EM Steps: Summary
• E-step: Given current estimates for each 𝜇𝜇𝑖𝑖, σ𝑖𝑖, and w𝑖𝑖, 

update 𝑝𝑝𝑖𝑖𝑗𝑗 :

• M-step: Given our current estimates for each 𝑝𝑝𝑖𝑖𝑗𝑗, update 
𝜇𝜇𝑖𝑖, σ𝑖𝑖, and w𝑖𝑖:
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𝜇𝜇𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗]
∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

𝜎𝜎𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑖𝑖 2]

∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑁𝑁𝑖𝑖 𝑥𝑥𝑗𝑗 ∗ 𝑤𝑤𝑖𝑖

𝑃𝑃(𝑥𝑥𝑗𝑗)

𝑤𝑤𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

∑𝑢𝑢=1𝑘𝑘 ∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑢𝑢𝑗𝑗



The EM Algorithm - Termination
• The log likelihood of the training data is defined as:

• As a reminder, M is the Gaussian mixture, defined as:

• One can prove that, after each iteration of the E-step and the M-
step, this log likelihood increases or stays the same. 

• We check how much the log likelihood changes at each iteration.
• When the change is below some threshold, we stop. 61
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The EM Algorithm: Summary
• Initialization:

– Initialize each μi, σi, wi, using your favorite approach (e.g., set 
each μi to a random value, and set each σi to 1, set each wi
equal to 1/k).

– last_log_likelihood = -infinity.

• Main loop:
– E-step:

• Given our current estimates for each μi, σi, and wi, update each pij.

– M-step:
• Given our current estimates for each pij, update each μi, σi, and wi.

– log_likelihood = 𝐿𝐿 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 .
– if (log_likelihood – last_log_likelihood) < threshold, break.
– last_log_likelihood = log_likelihood 62



The EM Algorithm: Limitations
• When we fit a Gaussian to data, we always get the same result.
• We can also prove that the result that we get is the best 

possible result.
– There is no other Gaussian giving a higher log likelihood to the data, 

than the one that we compute as described in these slides.

• When we fit a mixture of Gaussians to the same data, do we 
always end up with the same result?
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The EM Algorithm: Limitations
• When we fit a Gaussian to data, we always get the same result.
• We can also prove that the result that we get is the best 

possible result.
– There is no other Gaussian giving a higher log likelihood to the data, 

than the one that we compute as described in these slides.

• When we fit a mixture of Gaussians to the same data, we 
(sadly) do not always get the same result.

• The EM algorithm is a greedy algorithm.
• The result depends on the initialization values. 
• We may have bad luck with the initial values, and end up with a 

bad fit.
• There is no good way to know if our result is good or bad, or if 

better results are possible.
64



Multidimensional Gaussians

• Instead of assuming that each dimension is 
independent, we can instead model the distribution 
using a multi-dimensional Gaussian:

• To specify this Gaussian, we need to estimate the 
mean μ and the covariance matrix Σ.

• In the above formula, |Σ| denotes the determinant
of covariance matrix Σ.
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𝑁𝑁 𝑣𝑣 =
1

2𝜋𝜋 𝑑𝑑|Σ|
exp −

1
2

(𝑥𝑥 − 𝜇𝜇)ΤΣ−1(𝑥𝑥 − 𝜇𝜇)



Multidimensional Gaussians - Mean

• Let x1, x2, …, xn be d-dimensional vectors.
• xi = (xi,1, xi,2, …, xi,d), where each xi,j is a real number.
• Then, the mean μ = (μ1, ..., μd) is computed as:

• Therefore, μj = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖,𝑗𝑗
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Multidimensional Gaussians –
Covariance Matrix

• Let x1, x2, …, xn be d-dimensional vectors.
• xi = (xi,1, xi,2, …, xi,d), where each xi,j is a real number.
• Let Σ be the covariance matrix. Its size is dxd.
• Let σr,c be the value of Σ at row r, column c.
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𝜎𝜎𝑟𝑟,𝑐𝑐 =
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EM With Multidimensional Gaussians

68

• We follow the same steps as in the one-dimensional 
case.

• However, now the means are vectors, and instead of 
variances we need to estimate covariance matrices.

• Notation:
– 𝝁𝝁𝑖𝑖: mean of the i-th Gaussian in the mixture. It is a vector of 

the same dimensionality as the data points.
– 𝜇𝜇𝑖𝑖,𝑐𝑐: value at dimension 𝑐𝑐 of vector 𝝁𝝁𝑖𝑖.
– σ𝑖𝑖,𝑟𝑟,𝑐𝑐: value at row 𝑟𝑟 and column 𝑐𝑐 of the covariance matrix 

for the i-th Gaussian in the mixture.

68



EM With Multidimensional Gaussians

69

• E-step: Given current estimates for each 𝜇𝜇𝑖𝑖, σ𝑖𝑖,𝑟𝑟,𝑐𝑐, and 
w𝑖𝑖, update p𝑖𝑖𝑗𝑗:
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𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑁𝑁𝑖𝑖 𝑥𝑥𝑗𝑗 ∗ 𝑤𝑤𝑖𝑖

𝑃𝑃(𝑥𝑥𝑗𝑗)

𝑃𝑃 𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑁𝑁𝑖𝑖 𝑥𝑥𝑗𝑗 ∗ 𝑤𝑤𝑖𝑖
𝑃𝑃 𝑥𝑥𝑗𝑗 is the probability of 𝑥𝑥𝑗𝑗, 
and is computed using the 
sum rule.

𝑝𝑝𝑖𝑖𝑖𝑖 is the probability that 𝑥𝑥𝑗𝑗
belongs to cluster i (i.e., to 
Gaussian i) and it is computed 
using Bayes rule.



EM With Multidimensional Gaussians

70

• M-step: Given our current estimates for each p𝑖𝑖𝑖𝑖, 
update 𝜇𝜇𝑖𝑖, σ𝑖𝑖,𝑟𝑟,𝑐𝑐, and w𝑖𝑖:
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𝜇𝜇𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖 𝑥𝑥𝑗𝑗]
∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

σ𝑖𝑖,𝑟𝑟,𝑐𝑐 =
∑𝑗𝑗=1𝑛𝑛 [𝑝𝑝𝑖𝑖𝑖𝑖(𝑥𝑥𝑗𝑗,𝑟𝑟 − 𝜇𝜇𝑖𝑖,𝑟𝑟)(𝑥𝑥𝑗𝑗,𝑐𝑐 − 𝜇𝜇𝑖𝑖,𝑐𝑐)]

∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

𝑤𝑤𝑖𝑖 =
∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑖𝑖𝑖𝑖

∑𝑢𝑢=1𝑘𝑘 ∑𝑗𝑗=1𝑛𝑛 𝑝𝑝𝑢𝑢𝑗𝑗



EM for Clustering

• This EM algorithm can be 
viewed as a clustering 
algorithm.
– Each Gaussian defines a 

cluster.
– Weights p𝑖𝑖𝑖𝑖 define the degree

to which object x𝑗𝑗 is a member of the cluster defined by 
the i-th Gaussian.

– These are “soft” assignments of objects to clusters.
– They can be converted to “hard” assignments by finding, 

for each object x𝑗𝑗, the highest value among weights p𝑖𝑖𝑖𝑖.
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EM Clustering: 
Initialization

• Let's assume that each
𝑥𝑥𝑛𝑛 is a 𝐷𝐷-dimensional 
column vector.

• We want to learn the 
parameters of 𝐾𝐾 Gaussians 𝑁𝑁1, 𝑁𝑁2,…, 𝑁𝑁𝐾𝐾.

• Gaussian 𝑁𝑁𝑘𝑘 is defined by these parameters:
– Mean 𝜇𝜇𝑘𝑘, which is a 𝐷𝐷-dimensional column vector.
– Covariance matrix Σ𝑘𝑘, which is a 𝐷𝐷 × 𝐷𝐷 matrix.

• We initialize each 𝜇𝜇𝑘𝑘 and each Σ𝑘𝑘 to random values.
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EM Clustering: 
Initialization

• We initialize each 𝜇𝜇𝑘𝑘
and each Σ𝑘𝑘 to random 
values.

• The figure shows those
initial assignments.
– For every object 𝑥𝑥𝑗𝑗, we give it the color of the cluster 𝑘𝑘 for 

which 𝑝𝑝𝑘𝑘𝑘𝑘 is the highest.
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EM Clustering: 
Main Loop

• The main loop alternates
between:
– Computing new assignment 

probabilities 𝑝𝑝𝑘𝑘𝑘𝑘 that object 
𝑥𝑥𝑛𝑛 belongs to Gaussian 𝑁𝑁𝑘𝑘.

– Computing, for each Gaussian 𝑁𝑁𝑘𝑘, a new mean 𝜇𝜇𝑘𝑘, a new 
covarriance matrix Σ𝑘𝑘 , and a new weight 𝑤𝑤𝑘𝑘, using the 
current assignment probabilities 𝑝𝑝𝑘𝑘𝑘𝑘.

• Here is the result after one iteration of the main 
loop:
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EM Clustering: 
Main Loop

• The main loop alternates
between:
– Computing new assignment 

probabilities 𝑝𝑝𝑘𝑘𝑘𝑘 that object 
𝑥𝑥𝑛𝑛 belongs to Gaussian 𝑁𝑁𝑘𝑘.

– Computing, for each Gaussian 𝑁𝑁𝑘𝑘, a new mean 𝜇𝜇𝑘𝑘, a new 
covarriance matrix Σ𝑘𝑘 , and a new weight 𝑤𝑤𝑘𝑘, using the 
current assignment probabilities 𝑝𝑝𝑘𝑘𝑘𝑘.

• Here is the result after two iterations of the main 
loop:
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EM Clustering: 
Main Loop

• The main loop alternates
between:
– Computing new assignment 

probabilities 𝑝𝑝𝑘𝑘𝑘𝑘 that object 
𝑥𝑥𝑛𝑛 belongs to Gaussian 𝑁𝑁𝑘𝑘.

– Computing, for each Gaussian 𝑁𝑁𝑘𝑘, a new mean 𝜇𝜇𝑘𝑘, a new 
covarriance matrix Σ𝑘𝑘 , and a new weight 𝑤𝑤𝑘𝑘, using the 
current assignment probabilities 𝑝𝑝𝑘𝑘𝑘𝑘.

• Here is the result after three iterations of the main 
loop:
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EM Clustering: 
Main Loop

• The main loop alternates
between:
– Computing new assignment 

probabilities 𝑝𝑝𝑘𝑘𝑘𝑘 that object 
𝑥𝑥𝑛𝑛 belongs to Gaussian 𝑁𝑁𝑘𝑘.

– Computing, for each Gaussian 𝑁𝑁𝑘𝑘, a new mean 𝜇𝜇𝑘𝑘, a new 
covarriance matrix Σ𝑘𝑘 , and a new weight 𝑤𝑤𝑘𝑘, using the 
current assignment probabilities 𝑝𝑝𝑘𝑘𝑘𝑘.

• Here is the result after four iterations of the main 
loop:
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EM Clustering: 
Main Loop

• The main loop alternates
between:
– Computing new assignment 

probabilities 𝑝𝑝𝑘𝑘𝑘𝑘 that object 
𝑥𝑥𝑛𝑛 belongs to Gaussian 𝑁𝑁𝑘𝑘.

– Computing, for each Gaussian 𝑁𝑁𝑘𝑘, a new mean 𝜇𝜇𝑘𝑘, a new 
covarriance matrix Σ𝑘𝑘 , and a new weight 𝑤𝑤𝑘𝑘, using the 
current assignment probabilities 𝑝𝑝𝑘𝑘𝑘𝑘.

• Here is the result after five iterations of the main 
loop.
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EM Clustering: 
Main Loop

• Here is the result after 
six iterations of the main 
loop.

• The results have not 
changed, so we stop.

• Note that, for this example, EM has not found the 
same clusters that k-means produced.
– In general, k-means and EM may perform better or worse, 

depending on the nature of the data we want to cluster, 
and our criteria for what defines a good clustering result.

79



EM Clustering: 
Another Example

• Here is another example.
• What clusters would you

identify here, if we were
looking for two clusters?
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EM Clustering: 
Another Example

• Here is another example.
• What clusters would you

identify here, if we were
looking for two clusters?

• In general, there are no absolute criteria for what 
defines a "good" clustering result, and different people 
may give different answers.

• However, for many people, the two clusters are:
– A central cluster of points densely crowded together.
– A peripheral cluster of points spread out far from the center.
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EM Clustering: 
Another Example

• Let's see how EM does on
this dataset.

• Here we see the initialization.
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EM Clustering: 
Another Example

• Let's see how EM does on
this dataset.

• Here we see the result after
one iteration of the main 
loop.
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EM Clustering: 
Another Example

• Let's see how EM does on
this dataset.

• Here we see the result after
two iterations of the main 
loop.
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EM Clustering: 
Another Example

• Let's see how EM does on
this dataset.

• Here we see the result after
three iterations of the main 
loop.
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EM Clustering: 
Another Example

• Let's see how EM does on
this dataset.

• Here we see the result after
six iterations of the main 
loop.
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EM Clustering: 
Another Example

• Let's see how EM does on
this dataset.

• Here we see the result after
nine iterations of the main 
loop.

• This is the final result, 
subsequent  iterations do not 
lead to any changes.
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EM vs. K-Means

• The k-means result (on the left) is different than the 
EM result (on the right).

• EM can assign an object to cluster A even if the object 
is closer to the mean of cluster B. 88



EM vs. K-Means

• Another important difference between K-means 
clustering and EM clustering is:
– K-means makes hard assignments: an object belongs to 

one and only one cluster.
– EM makes soft assignments: weights 𝑝𝑝𝑖𝑖𝑖𝑖 specify how much 

each object 𝑥𝑥𝑗𝑗 belongs to cluster 𝑖𝑖.
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Agglomerative 
Clustering

• In agglomerative clustering, 
there are different levels of 

clustering.
– At the top level, every object 

is its own cluster.
– Under the top level, each level 

is obtained by merging the two
most similar (less distant) clusters
from the previous level.

– The bottom level has just one cluster, 
covering the entire dataset.
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Agglomerative 
Clustering

• Under the top level, each
level is obtained by merging 
the two most similar, or less
distant clusters from the 
previous level.

• There are different variants 
of agglomerative clustering.
– Each variant is specified by 

the measure for measuring the similarity 
or distance  between two clusters.
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Agglomerative 
Clustering

• Suppose that we define the 
distance of two clusters to be
the minimum distance between 
objects from the two clusters.

• Let 𝑑𝑑 be a distance measure
between objects in our data.

• The minimum distance 
𝑑𝑑min(𝑋𝑋,𝑌𝑌) between two sets 𝑋𝑋
and 𝑌𝑌 is defined as:

𝑑𝑑min 𝑋𝑋,𝑌𝑌 = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• Using 𝑑𝑑min, what do we merge next?
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Agglomerative 
Clustering

• Suppose that we define the 
distance of two clusters to be
the minimum distance between 
objects from the two clusters.

• Let 𝑑𝑑 be a distance measure
between objects in our data.

• The minimum distance 
𝑑𝑑min(𝑋𝑋,𝑌𝑌) between two sets 𝑋𝑋
and 𝑌𝑌 is defined as:

𝑑𝑑min 𝑋𝑋,𝑌𝑌 = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• Clusters {𝐹𝐹} and {𝐺𝐺} are the closest to each other. Next?
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Agglomerative 
Clustering

• Suppose that we define the 
distance of two clusters to be
the minimum distance between 
objects from the two clusters.

• Let 𝑑𝑑 be a distance measure
between objects in our data.

• The minimum distance 
𝑑𝑑min(𝑋𝑋,𝑌𝑌) between two sets 𝑋𝑋
and 𝑌𝑌 is defined as:

𝑑𝑑min 𝑋𝑋,𝑌𝑌 = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• Clusters {𝐴𝐴} and {𝐷𝐷} are the closest to each other. Next?
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Agglomerative 
Clustering

• Suppose that we define the 
distance of two clusters to be
the minimum distance between 
objects from the two clusters.

• Let 𝑑𝑑 be a distance measure
between objects in our data.

• The minimum distance 
𝑑𝑑min(𝑋𝑋,𝑌𝑌) between two sets 𝑋𝑋
and 𝑌𝑌 is defined as:

𝑑𝑑min 𝑋𝑋,𝑌𝑌 = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• Clusters {𝐵𝐵} and {𝐶𝐶} are the closest to each other. Next?
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Agglomerative 
Clustering

• Suppose that we define the 
distance of two clusters to be
the minimum distance between 
objects from the two clusters.

• Let 𝑑𝑑 be a distance measure
between objects in our data.

• The minimum distance 
𝑑𝑑min(𝑋𝑋,𝑌𝑌) between two sets 𝑋𝑋
and 𝑌𝑌 is defined as:

𝑑𝑑min 𝑋𝑋,𝑌𝑌 = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• Clusters {𝐴𝐴,𝐷𝐷} and {𝐵𝐵,𝐶𝐶} are the closest to each other. Next? 96
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Agglomerative 
Clustering

• Suppose that we define the 
distance of two clusters to be
the minimum distance between 
objects from the two clusters.

• Let 𝑑𝑑 be a distance measure
between objects in our data.

• The minimum distance 
𝑑𝑑min(𝑋𝑋,𝑌𝑌) between two sets 𝑋𝑋
and 𝑌𝑌 is defined as:

𝑑𝑑min 𝑋𝑋,𝑌𝑌 = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• Merging {𝐴𝐴,𝐷𝐷,𝐵𝐵,𝐶𝐶} and {𝐸𝐸}. Next? 97
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Agglomerative 
Clustering

• Suppose that we define the 
distance of two clusters to be
the minimum distance between 
objects from the two clusters.

• Let 𝑑𝑑 be a distance measure
between objects in our data.

• The minimum distance 
𝑑𝑑min(𝑋𝑋,𝑌𝑌) between two sets 𝑋𝑋
and 𝑌𝑌 is defined as:

𝑑𝑑min 𝑋𝑋,𝑌𝑌 = min
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• Merging {𝐴𝐴,𝐷𝐷,𝐵𝐵,𝐶𝐶,𝐸𝐸} and {𝐹𝐹,𝐺𝐺}. 
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Agglomerative 
Clustering

• Instead of 𝑑𝑑min, we could use other 
measures of distance. For example: 

𝑑𝑑max 𝑋𝑋,𝑌𝑌 = max
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

𝑑𝑑mean 𝑋𝑋,𝑌𝑌 = mean
𝑥𝑥∈𝑋𝑋,𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)

• The distance measure (𝑑𝑑m𝑖𝑖𝑖𝑖, 
𝑑𝑑mean, or 𝑑𝑑max) is a black box.
– Agglomerative clustering merges,

at each step, the two clusters that 
are closest to each other according
to the chosen distance measure.

– Different distance measures can lead 
to different results. 99
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Hierarchical
Clustering

• Agglomerative clustering is an 
example of what we call hierarchical 
clustering.

• In hierarchical clustering, there are 
different levels of clustering.
– Each level is obtained by merging, or 

splitting, clusters from the previous 
level.

• If we merge clusters from the 
previous level, we get 
agglomerative clustering.

• If we split clusters from the previous 
level, it is called divisive clustering. 100
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Clustering - Recap

• The goal in clustering is to split a set of objects into groups of 
similar objects.

• There is no single criterion for measuring the quality of a 
clustering result.

• The number of clusters typically needs to be specified in 
advance.
– Methods (that we have not seen) do exist for trying to find the 

number of clusters automatically.
– In hierarchical clustering (e.g., agglomerative clustering), we do not 

need to pick a number of clusters.

• A large variety of clustering methods exist. 
• We saw a few examples of such methods:

– K-means, K-medoid, EM, agglomerative clustering.
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