
Boston University Computer Science Tech. Report No. 2003-009, April 1, 2003.

To appear in Proc. IEEE CVPR, June 2003.

Estimating 3D Hand Pose from a Cluttered Image

Vassilis Athitsos and Stan Sclaroff∗

Computer Science Department
Boston University

111 Cummington Street
Boston, MA 02215

email: {athitsos, sclaroff}@cs.bu.edu

Abstract

A method is proposed that can generate a ranked list of
plausible three-dimensional hand configurations that best
match an input image. Hand pose estimation is formulated
as an image database indexing problem, where the closest
matches for an input hand image are retrieved from a large
database of synthetic hand images. In contrast to previ-
ous approaches, the system can function in the presence of
clutter, thanks to two novel clutter-tolerant indexing meth-
ods. First, a computationally efficient approximation of
the image-to-model chamfer distance is obtained by embed-
ding binary edge images into a high-dimensional Euclidean
space. Second, a general-purpose, probabilistic line match-
ing method identifies those line segment correspondences
between model and input images that are the least likely to
have occurred by chance. The performance of this clutter-
tolerant approach is demonstrated in quantitative experi-
ments with hundreds of real hand images.

1. Introduction

Techniques that allow computers to estimate the 3D pose
of a human hand in images and video sequences can be
used in a wide range of applications. Some examples are
human-machine interfaces, automatic recognition of signed
languages and gestural communication, and non-intrusive
motion capture systems.

Our system provides estimates of 3D hand pose from a
single cluttered image. In our approach, hand pose estima-
tion is formulated as an image database indexing problem.
The closest matches for an input hand image are retrieved
from a large database of synthetic hand images. The ground
truth labels of the retrieved matches are used as hand pose

1This research was supported in part by the National Science Founda-
tion, under grants IIS-0208876, IIS-9912573, and EIA-9809340.

estimates for the input. A previous version of our system
was presented in [1]. One limitation of that method was
that it required very clean hand segmentation. In this pa-
per we extend our method so that it can work under more
difficult segmentation conditions. The system now only re-
quires that a bounding box of roughly the right location and
size has been placed around the hand. The bounding box is
allowed to include arbitrary amounts of clutter in addition
to the hand region. Examples of input images are shown in
Figure 1.

Improved performance under clutter is achieved by using
two novel similarity measures. In Section 4 we introduce
an indexing method, based on the chamfer distance, that
can be used to quickly eliminate most database candidate
matches. In Section 5 we present a line matching method
that also improves retrieval accuracy for cluttered images.
Our method combines geometric and saliency criteria in a
probabilistic way, and identifies line matches that are the
least likely to have occurred by chance.

2. Related Work

Computer vision systems that estimate 3D hand pose
typically do it in the context of tracking [8, 16, 19, 20, 24].
In that context, the pose can be estimated at the current
frame as long as the system knows the pose at the previ-
ous frame. Since such trackers rely on knowledge about the
previous frame, they need to be manually initialized, and
cannot recover when they lose the track.

Modules that can estimate hand pose from a single image
can be useful in automatically initializing hand trackers. A
machine learning system that estimates hand pose from a
single image is described in [17]. Hand pose is estimated
based on the geometric moments of the input hand image.
In [15] 3D locations of fingers are estimated from a stereo
image, and they are used to infer 3D joint angles. In [18]
hand pose is estimated from a single image using shadow
information and assuming a calibrated light source. Due to

Figure 1. Input hand images, from which our system es-
timates 3D hand pose, and the corresponding edge images.
The edge images are used in computing chamfer distances.

the difficulty of obtaining ground truth estimates, none of
these approaches reports quantitative results on real images
of hands.

Existing 3D hand pose estimation methods typically as-
sume that the hand is cleanly segmented in the input image.
Appearance-based methods for hand pose recognition, like
[6, 14, 21, 23], can tolerate clutter, but they are limited to
estimating 2D hand pose from a limited number of view-
points. Our method can handle arbitrary viewpoints.

Our system uses an approximation of the directed cham-
fer distance to quickly eliminate most candidate database
matches. Our approach is a simplified application of the
methods described in [5, 10, 11] for constructing low-
distortion Euclidean embeddings of arbitrary metric spaces.
These concepts are discussed in Section 4.2.

This paper also introduces a novel line matching method.
Existing methods [3, 7, 9, 12] use spatial/geometric criteria
to determine line correspondences. It is typically assumed
that lines have already been extracted. However, in the pres-
ence of noise and clutter, the line extraction process can
have a significant effect on the accuracy of line matching.
Extracting a lot of lines yields too many candidate matches,
and geometric criteria may not be sufficient to discriminate
among them. Extracting a small number of lines increases
the risk that important object features will be excluded. As
described in Section 5, our system addresses this problem
by extracting a large number of lines, and using saliency cri-
teria to discriminate among them. In addition, our method
requires no a priori knowledge of camera parameters, imag-
ing noise, or hard geometric constraints.

3. Framework for Hand Pose Estimation

We model the hand as an articulated object, consisting
of 16 links: the palm and 15 links corresponding to finger
parts. Each finger has three links (Figure 2). There are 15

joints, that have a total of 20 degrees of freedom (DOFs).
For the 20-dimensional vector of joint angles we use syn-
onymously the terms “hand shape” and “hand configura-
tion.”

The appearance of a hand shape also depends on the
camera parameters. For simplicity, we consider only the
camera viewing direction (two DOFs), and image plane ori-
entation. We use the terms “camera parameters,” “viewing
parameters” and “3D orientation” synonymously to denote
the three-dimensional vector describing viewing direction
and image plane orientation.

Given a hand configuration vector Ch = (c1, ..., c20) and
a viewing parameter vector Vh = (v1, v2, v3), we define the
hand pose vector Ph to be the 23-dimensional concatenation
of Ch and Vh: Ph = (c1, ..., c20, v1, v2, v3).

Using these definitions, our framework for hand pose es-
timation can be summarized as follows:

1. Preprocessing step: create a database containing a uni-
form sampling of all possible views of the hand shapes
that we want to recognize. Label each view with the
hand pose parameters that generated it.

2. Given an input image, retrieve the database views that
are the most similar. Use the parameters of the most
similar views as estimates of the hand pose parameters
in the input image.

3.1. Database

Our database contains right-hand images of 26 hand
shape prototypes. Each prototype is rendered from 86 dif-
ferent viewpoints (Figure 2), sampled approximately uni-
formly from the surface of the viewing sphere. The render-
ing is done using a hand model and computer graphics [22].
To accommodate rotation-variant similarity measures (like
the chamfer distance), 48 images are generated from each
viewpoint, corresponding to 48 uniformly sampled rotations
of the image plane. Overall, the database includes 4128
views of each hand shape prototype and 107,328 images
overall. We refer to those images using the terms “database
images,” “model images,” or “synthetic images.”

4. Approximate Directed Chamfer Distance

The chamfer distance [2] is a well-known method to
measure the distance between two edge images. Edge im-
ages are represented as sets of points, corresponding to
edge pixel locations. The X-to-Y directed chamfer distance
c(X,Y) is defined as

c(X,Y) =
1
|X|

∑

x∈X

min
y∈Y

‖x− y‖ , (1)

Figure 2. Synthetic images of hands. Left: the articulated hand model. The palm and 15 finger links are shown in different colors.
Middle: the 26 basic shapes used to generate model images in our database. Right: four 3D orientations of the same hand shape.

where ‖a− b‖ denotes the Euclidean distance between two
pixel locations a and b. The undirected chamfer distance
C(X,Y) is

C(X,Y) = c(X,Y) + c(Y,X) . (2)

We will use the abbreviations CD to stand for “cham-
fer distance,” and DCD to stand for “directed chamfer dis-
tance.”

4.1. Efficiency of Chamfer Distance

The model-to-input DCDs between the input image and
all model images can be computed very efficiently, using
the distance transform method. However, keeping the dis-
tance transforms of all database images in memory requires
too much RAM, and consequently computing all input-to-
model DCDs is much slower: if each edge image has n
edge pixels, and the database contains d images, the time
complexity is O(dn log n). In contrast, the time complexity
for the model-to-input DCD, using distance transforms, is
O(dn).

In the next section we define what we call the approxi-
mate directed chamfer distance (approximate DCD), which
can be evaluated efficiently and which maintains a big part
of the discrimination power of the exact DCD.

4.2. Euclidean Embedding of Edge Images

Embeddings of arbitrary metric spaces into a Euclidean
space with an Lp norm have received increased attention
in recent years [5, 10, 11]. Typically the goal is to find a
low-distortion embedding E of an arbitrary metric space G
into a k-dimensional Euclidean space �k, i.e. an embed-
ding under which pairwise distances between points in G
are preserved with low distortion in �k. Such embeddings
are useful when it is computationally expensive to evaluate
distances in G, and it is more efficient to map points of G
into �k and compute their Lp distance in �k.

A class of embeddings often used in this context are
Lipschitz embeddings [4, 13]. A short discussion of Lips-
chitz embeddings in the context of database indexing can

be found in [10]. Our approach is mostly related to [11],
and is a simple application of Lipschitz embeddings. The
basic intuition behind Lipschitz embeddings is that, in most
spaces, two nearby points have similar distances to any third
point. In a metric space, this property holds because of the
triangle inequality. The directed chamfer distance does vi-
olate the triangle inequality for some triples of images, but
we have found experimentally that such triples of images
rarely occur in our system.

To define a Lipschitz embedding E from the space of
edge images to �k, we randomly choose k database edge
images r1, r2, ..., rk, which we call reference images. In
our experiments k = 200. The embedding E of an arbitrary
edge image g is then defined as

E(g) = (c(g, r1), c(g, r2), ..., c(g, rk)) , (3)

where c is the DCD as defined in Equation 1. Based on the
intuition that nearby edge images have similar distances to
other edge images, we expect the Euclidean embeddings of
nearby edge images to be close to each other.

The embeddings of all database images are computed
off-line. Given an input edge image I , we compute its em-
bedding E(I), which involves computing DCDs between
I and the k reference images ri. We define the approxi-
mate directed chamfer distance c′(I,B) between I and a
database image B to be the L1 distance between E(I) and
E(B). We have also experimented with the L2 norm, it did
not lead to significantly different retrieval results. If every
edge image contains n edge pixels, the time complexity of
computing the approximate DCDs between the input image
and d database images is O(kn log n + dk), which is sig-
nificantly lower than the complexity of computing the exact
DCDs (O(dn log n)), since k � d. In our implementation,
computing the exact DCDs between the input image and all
database images takes about five minutes, whereas comput-
ing the approximate DCDs takes less than a second.

Experiments with values of k between 200 and 1000
gave roughly comparable results in terms of retrieval ac-
curacy. On the other hand, retrieval accuracy deteriorated
as the value of k decreased, especially for values under 100.

Figure 3. The search region for line segment vw, with
center p and length l. It consists of the triangles pxr and
pzy. The angle between xp and rp is 7.5 degrees; this value
is obtained by dividing 180 degrees by the number No of
sampled orientations. The search region is divided into l
zones Zi, where i ∈ 0, 1, ..., l − 1. Each zone is between
two lines perpendicular to vw, that intersect vw at points
that are �i/2� and �i/2� + 1 pixels away from p. In the
picture, c1 and c3 are j pixels away from p, and c2 and c4

are j + 1 pixels away from p. Lines d1c1, d2c2, d3c3, d4c4

are perpendicular to vw. The votes of all point features in
the same zone are averaged, so that each zone contributes a
vote between -1 and 1.

5. Probabilistic Line Matching

The bounding contours of finger links often appear as
nearly-straight line segments in hand images. Some exam-
ples can be seen in Figure 4. Those line segments are easy
to extract in model images. It is a much harder task to ex-
tract them in real hand images, especially when clutter is
included.

The problem of matching line segments between two im-
ages can be decomposed into four sub-problems: selecting
point features, extracting line segments based on the point
features, establishing correspondences between segments,
and evaluating the quality of the correspondences.

The following subsections describe how our method
performs each of these stages. From this point on, the
words “lines” and “segments” are both used to mean “finite
straight line segments,” defined by two endpoints. “Model
lines” are lines extracted from database images and “input
lines” are lines extracted from the input image.

5.1. Extraction of Edge Points and Line Segments

Our method selects as point features all local maxima in
the direction of the image intensity gradient. A lot of noise
and clutter is included, but the risk of excluding useful hand
features is very small. Examples of point feature selection
can be seen in Figure 4.

For line extraction, we pick No orientations, uniformly
sampled between 0 and 180 degrees, and Nl lengths, uni-
formly sampled between 5 and 100 pixels. In our exper-
iments, No = 24 and Nl = 20. For every combination
of orientation o, length l and point feature position p, the
system extracts a line centered at p, with orientation o and
length l. Every extracted line segment has two attributes
that describe its saliency: vote density, and strength (aver-
age magnitude of intensity gradient). Saliency is a technical
term, roughly synonymous with “prominence”.

Given a segment vw, centered at p, with length l and ori-
entation o, we determine its vote density and strength from
point features in a search region (Figure 3). The search re-
gion is split into l parallel zones Zi, each of which contains
points about �i/2	 pixels away from p.

Given point feature fj with edge orientation a, we de-
fine the orientation difference θ(fj , vw) to be the angle (be-
tween 0 and 90 degrees) that a makes with o (the orientation
of vw). The vote Vf (fj , vw) that fj contributes is

Vf (fj , vw) = cos(2θ(fj , vw)) . (4)

Values of θ(fj , vw) exceeding 45 degrees yield negative
votes. In this way, line segments extracted from a cluttered
region receive positive support only from similarly oriented
point features. Randomly distributed edge orientations will
tend to cancel out.

The average vote Vz(Zi, vw) of each zone Zi is com-
puted as follows:

Vz(Zi, vw) =

∑
fj∈Zi

|Vf (fj , vw)|Vf (fj , vw)
∑

fj∈Zi
|Vf (fj , vw)| . (5)

The vote density V (vw) is the sum of votes of all zones
Zi divided by the length of vw:

V (vw) =

∑
i∈{0,1,2,...,l−1} Vz(Zi, vw)

l
. (6)

The strength S(vw) is defined in a similar way. We de-
note as Sf (fj) the magnitude of the intensity gradient of the
input image at location fj . Then, we define Sz(Zi, vw) and
S(vw) as

Sz(Zi, vw) =

∑
fj∈Zi:Vf (fj ,vw)>0 Vf (fj , vw)Sf (fj)∑

fj∈Zi:Vf (fj ,vw)>0 Vf (fj , vw)
,

(7)

S(vw) =

∑
Zi:Vz(Zi,vw)>0 Vz(Zi, vw)Sz(Zi, vw)

∑
Zi:Vz(Zi,vw)>0 Vz(Zi, vw)

. (8)

5.2. Measuring the Randomness of a Match

In model images we know exactly where each individual
finger link is located. Model lines are extracted off-line, by

Figure 4. Examples of line matching results. Left col-
umn: model images, with some extracted lines shown in
black. Middle column: input images, and the best matches
for the extracted model lines. Arrows link model lines to
input lines, when the correspondence is not clear. Right
column: the point features that were extracted from the in-
put images for the purpose of line matching. The matching
costs CL for the three rows were: 0.28, 0.31 and 0.62. In
the third row, the hand pose in the model image does not
match the hand pose in the input image.

fitting lines to finger contours. No vote density and strength
is extracted from those lines, since there is no uncertainty
about their saliency.

Given a model line A and an input line B, we define the
quality Q of the match (A, B) as follows:

Q(A,B) = (D(A,B), O(A,B), L(A,B), V (B), S(B)) ,
(9)

where V (B) and S(B) are the vote density and strength as
defined in Section 5.1. D(A,B) is the Euclidean distance
between the center points of A and B. O(A,B) is the an-
gle (between 0 and 90 degrees) between the orientations of
A and B. L(A,B) is the absolute difference between the
respective lengths of A and B. We use the term “DOLVS
vector” for a vector like Q(A,B).

We define a partial order ≤ between two DOLVS vec-
tors:

(d1, o1, l1, v1, s1) ≤ (d2, o2, l2, v2, s2) ⇔
(d1 ≤ d2), (o1 ≤ o2), (l1 ≤ l2), (v1 ≥ v2), (s1 ≥ s2) (10)

The sign ≤ should be read as “better than or equal to.” If,
given a model line A and input lines B and C, A is more
similar geometrically to B than it is to C, in terms of po-
sition, orientation, and length, and B also has higher vote
density and strength than C, then B matches A better than
C does.

Equation 10 is obviously only a partial order. Given an
input image I and the set of line segments XI extracted from
it, we can define a total order in the space of DOLVS vec-
tors, by assigning to every DOLVS vector b = (d, o, l, v, s)
a scalar measure of frequency. Let M be the set of lines
extracted from all database images. For any line A ∈ M ,
define the binary function H(A,XI , b) to be 1 if there exists
a line segment C ∈ XI such Q(A,C) ≤ b, and zero oth-
erwise. Then, we can define a scalar measure of frequency
F (b):

F (b) = EA∈M (H(A,XI , b)) , (11)

where E stands for “expected value”. F (b) is the percentage
of model lines A ∈ M that have at least one match C in XI

such that Q(A,C) ≤ b.
Using F , we now define a total order � in the space of

DOLVS vectors as follows:

v1 � v2 ⇔ F (v1) ≤ F (v2) , (12)

where v1, v2 are DOLVS vectors. Given this total order, we
can easily define the best match for model line A in XI , to
be the line C ∈ XI that minimizes F (Q(A,C)); we con-
sider the quality of the match Q(A,C) to be the least likely to
be observed by chance, among the qualities of all matches
between A and a segment in XI .

Suppose that, for some A ∈ M and some C ∈ XI ,
F (Q(A,C)) = f . We can ask the following question: what
percentage of model lines in M have a match in XI whose
frequency is less than f? The answer to that question would
be a quantitative measure of how unusually good the match
between A and C is. To define this measure, we first define
a binary function H ′(A,XI , f) to be 1 if there exists a C ∈
XI such that F (Q(A,C)) ≤ f , and zero otherwise. Then,
we define the probability Pe(f) that a random model line
has at least one match in XI with frequency at most f :

Pe(f) = EA∈M (H ′(A,XI , f)) . (13)

Pe(f) is a monotonic function of f , but it has a more
intuitive interpretation than f . If a model line A has a match
C for which Pe(F (Q(A,C))) = 0.03, then we know that
only 3% of model lines have such good matches in XI , i.e.
matches with such a low value of Pe.

We define Pmin(A,XI) to be the value Pe for the best
match of A in XI :

Pmin(A,XI) = min
C∈XI

(Pe(F (Q(A,C)))) . (14)

In order to make it easy to compute and to look up val-
ues of F and Pe, we discretize the 5-dimensional space of
DOLVS vectors into a DOLVS histogram. In the bin b as-
sociated with value (d, o, l, v, s) we store F (b). Computing
F (b) is done by sampling from the set of all model lines
M , and matching each sampled model line with each line in
XI . In our experiments, the DOLVS histogram has 250,000
bins (25,10,10,10 and 10 values sampled respectively from
the range of D,O,L,V and S). About 2,000 model lines are
sampled to calculate F (b) for each bin b in the histogram.
After values F (b) have been computed for every bin b, we
can then compute the value of Pe(F (b)), again by sampling
from the set of all model lines M .

The values of F and Pe for every bin in the DOLVS
histogram are recomputed for every new input image. The
rareness of matches is solely determined based on the cur-
rent input image and the database images.

Examples of best matches found using our method can
be seen in Figure 4.

5.3. Line Matching Cost

Suppose we have a model image J , which contains the
set of lines {J1, J2, ..., Jj}, and an input image I with a
set of lines XI . We define the line-based matching cost
CL(J, I) to be

CL(J, I) =
1
j

j∑

i=1

Pmin(Ji,XI) . (15)

CL is the average of the probabilities of the best matches
of all lines in the model image. Low values of CL indi-
cate that the model lines were matched unusually well in
the input. One drawback of CL is that model images with a
small number of lines are more likely to achieve a low score
by chance, compared to model images with a large number
of lines. To account for that, we compute, for each possible
number of lines, the standard deviation of CL for model im-
ages with that number of lines. Using the standard deviation
we normalize CL, so that database images with any number
of lines tend to have scores in the same range.

As can be seen in Figure 4, line correspondences be-
tween correct database matches and the input image are fre-
quently not identified correctly. Model lines are frequently
matched to clutter or to nearby fingers. However, the match-
ing cost CL is on average much lower for correct matches
(about 0.35) than it is for random model images (about 0.5).
Using that cost to identify correct matches significantly im-
proves retrieval accuracy for cluttered images.

6. Two-Step Retrieval

To combine k different similarity measures, given an in-
put image I , we first obtain rankings of the database images

Figure 5. Examples of input images and results. First col-
umn: example input images. Second column: hand images
segmented using “box” segmentation, and the correspond-
ing edge images. Third column: highest ranking correct
match for each input image (synthetic hand images and cor-
responding edge images). Fourth column: highest ranking
incorrect match for each input image. Fifth column: for
each input image, rank of highest ranking correct match,
rank of highest ranking incorrect match, and frontal angle
of the hand pose in the input image.

in order of similarity to I using each measure separately.
We denote the rank of the i-th database image Vi under the
j-th measure as rij . We define a new, combined similarity
measure Mc(Vi, I) as

Mc(Vi, I) =
k∑

j=1

(log rij) . (16)

Then, we can rank the synthetic views again, using the
values of the combined measure. A more detailed discus-
sion of this method can be found in [1].

Since the model-to-image DCD and the approximate
image-to-model DCD can be evaluated very fast, we first
combine these two measures to obtain a preliminary rank-
ing of all database images. Then we keep a fixed number of
top matches (1000 in our experiments), and we rerank those
matches using the undirected chamfer distance, orientation
histograms [1] and the line matching cost CL. In this way
we obtain the final ranking of database images. Two-step
retrieval significantly improves retrieval speed, while pre-
serving to a large degree the accuracy of the computation-
ally expensive similarity measures.

7. Experiments

We have tested our system with 250 real images of right
hands. The hand shape in all test images is one of the 26
shape prototypes used to generate the database. There are
no restrictions on the 3D orientation of the hand in the test
images, since the database contains samples from the entire
space of possible 3D orientations for every shape prototype.
We have manually established pseudo-ground truth for each
test image, by labeling it with the corresponding shape pro-
totype and using the rendering software to find the view-
ing parameters under which the shape prototype looked the
most similar to the test image. This way of estimating view-
point parameters is not very exact; we found that manual es-
timates by different people varied by 10-30 degrees. Model
views cannot be aligned perfectly because the anthropomet-
ric parameters (like finger lengths and widths) of hands in
test images do not match those of the model, and because
the hand shapes in the real images are not exact replications
of the 26 shape prototypes.

We consider a database view V to be a correct match for
a test image I if the shape prototype with which we label I
is the one used in generating V , and the manually estimated
viewing parameters of I are within 30 degrees of those of V
[1]. On average, there are 30.4 correct matches for each test
image in the database. Our measure of retrieval accuracy
for a given test image I is the rank of the highest-ranking
correct match that was retrieved for I . 1 is the highest (best)
possible rank.

The experiments were aimed at demonstrating the per-
formance of the system under clutter. We tested two differ-
ent hand segmentation methods: “fine” segmentation and
“box” segmentation. Fine segmentation locates the hand
region by applying skin detection. Box segmentation ex-
tracts the entire bounding box of the hand region found by
fine segmentation. The bounding box includes clutter from
the background. Table 1 shows retrieval results for the test
images. As expected, accuracy decreases with clutter. Very
often, as Figure 5 shows, the hand pose in the top database
matches is very different than the pose in the input image.
At the same time, Table 1 shows that the two similarity mea-
sures introduced in this paper (approximate image-to-model
DCD and line matching cost CL) significantly improve re-
trieval accuracy under clutter over existing methods. The
approximate image-to-model DCD also has a big effect on
accuracy under “fine” segmentation.

Given an input image, we use the term “frontal angle” to
denote the angle (from 0 to 90 degrees) between the view-
ing direction and a line perpendicular to the palm. Figure 5
shows the frontal angles of some test images. Table 2 shows
the median rank of the highest-ranking correct matches for
test images observed from different frontal angle ranges.
Retrieval accuracy tends to be higher for frontal views (low

Results for first retrieval step:
Method used 1-250 1-500 1-1000 1-2000 median
F, MICD 55.6 64.8 76.8 88.0 193
F, MICD, AIMCD 74.4 82.0 87.6 92.4 49
B, MICD 55.6 68.0 78.0 84.4 169
B, MICD, AIMCD 63.2 74.4 82.8 90.8 127

Results for second retrieval step:
Method used 1 1-4 1-16 1-64 1-256 median
F, CD, 11.6 25.6 47.2 66.0 82.4 20
F, CD, EO 9.2 23.2 42.0 63.6 83.6 23
F, CD, EO, LM 13.6 26.4 45.2 67.6 84.0 21
B, CD 6.0 10.8 23.2 40.4 61.6 127
B, CD, EO 6.0 11.2 27.6 46.8 68.0 84
B, CD, EO, LM 8.0 18.4 32.8 54.4 74.8 47

Table 1. For every method used, we show the percentage
of test images for which the highest ranking correct match
was within each range, and the median rank of the highest
ranking correct matches. In the first step, all database im-
ages are ranked, and the 1000 top matches (using MICD and
AIMCD) are reranked in the second step. F and B stand for
“fine” and “box segmentation.” Other abbreviations: MICD
(model-to-image chamfer distance), AIMCD (approximate
image-to-model chamfer distance), CD (chamfer distance),
EO (edge orientations), LM (line matching).

Frontal angle 0-22.5 22.5-45 45-67.5 67.5-90
of images 52 71 93 34
Median using F 9 12 50 26
Median using B 24 36 93 44

Table 2. Accuracy over different frontal angles. For each
range, we indicate the number of test images with frontal
angles in that range, and the median rank of the highest
ranking correct matches for those images.

frontal angles), where more features are visible.
The original bounding boxes of the hand in the input

images had sizes that were mostly between 80x110 and
120x160 pixels. We have also tested our system with 177
images where the hand is smaller (bounding box sizes be-
tween 50x80 and 70x100 pixels). The accuracy is signifi-
cantly worse (the median rank of the highest ranking cor-
rect matches for those images is 222 under “box” segmen-
tation). We have also run experiments on the 276 test im-
ages we used in [1], where the hand is very cleanly seg-
mented, and the bounding box sizes are about 150x200. For
those images, the median rank of the highest ranking correct
matches is 5.

Total processing time, including hand segmentation, ex-
traction of line segments, and the two retrieval steps, was
about 15 seconds per input image, on a PC with a 1.2GHz
Athlon processor, using a rather unoptimized C++ imple-
mentation. The program used about 300MB of memory.

8. Discussion and Future Work

Compared to the system we described in [1], the current
system constitutes an improvement, in that it can handle in-
put images for which segmentation is rough and includes
some clutter. Retrieval accuracy is still too low for the sys-
tem to be used as a stand-alone module for 3D hand pose
estimation. The system may be useful in providing single
frame estimates to a 3D hand tracker, to achieve automatic
initialization and error recovery. Ideally the system would
provide multiple estimates (a few tens) to the tracker, and
the tracker would reinforce correct estimates as it tracked
them through time. The current accuracy of the system may
be sufficient for such an application. It will be interesting to
see how integrating our system with a 3D hand tracker will
work in practice.

Our system can only handle a few tens of hand shapes.
This number may be sufficient for some applications, like
recognition of sign languages (fewer than 100 basic hand
shapes are used in ASL) or human computer interfaces. On
the other hand, a larger number of hand shapes must be con-
sidered for unconstrained 3D hand pose estimation.

Although our method allows for segmentation errors in
identifying the boundaries of the hand, it still requires fairly
accurate estimates of the center and size of the hand. The
system will not work if the estimated diameter of the hand
is wrong by, say, a factor of two. Designing similarity mea-
sures that can tolerate such errors remains a challenging
problem.

9. Conclusions

We have presented a method that estimates hand pose
using image database indexing methods. Two novel clutter-
tolerant methods, the approximate image-to-model cham-
fer distance, and a similarity measure based on probabilis-
tic line matching, are employed to improve system perfor-
mance. Both methods are generally applicable, and can be
employed in any domain where the chamfer distance is used
or where line matching needs to be performed.

References

[1] V. Athitsos and S. Sclaroff. An appearance-based framework
for 3D hand shape classification and camera viewpoint esti-
mation. In Automatic Face and Gesture Recognition, 2002.

[2] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf. Paramet-
ric correspondence and chamfer matching: Two new tech-
niques for image matching. In IJCAI, pages 659–663, 1977.

[3] J. Beveridge and E. Riseman. How easy is matching 2D line
models using local search? PAMI, 19(6):564–579, 1997.

[4] J. Bourgain. On Lipschitz embeddings of finite metric
spaces in hilbert space. Israel Journal of Mathematics,
52:46–52, 1985.

[5] C. Faloutsos and K. Lin. FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. In ACM SIGMOD International Con-
ference on Management of Data, pages 163–174, 1995.

[6] W. Freeman and M. Roth. Computer vision for computer
games. In Automatic Face and Gesture Recognition, pages
100–105, 1996.

[7] W. Grimson, T. Lozano-Perez, and D. Huttenlocher. Ob-
ject Recognition by Computer: The Role of Geometric Con-
straints. MIT Press, 1990.

[8] T. Heap and D. Hogg. Towards 3D hand tracking using a
deformable model. In Face and Gesture Recognition, pages
140–145, 1996.

[9] S. Heuel and W. Förstner. Matching, reconstructing and
grouping 3D lines from multiple views using uncertain pro-
jective geometry. In CVPR, volume 2, pages 517–524, 2001.

[10] G. Hjaltason and H. Samet. Contractive embedding meth-
ods for similarity searching in metric spaces. Technical Re-
port TR-4102, Computer Science Department, University of
Maryland, 2000.

[11] G. Hristescu and M. Farach-Colton. Cluster-preserving em-
bedding of proteins. Technical Report 99-50, Computer Sci-
ence Department, Rutgers University, 1999.

[12] S. Lanser and T. Lengauer. On the selection of candidates for
point and line correspondences. In International Symposium
on Computer Vision, pages 157–162, 1995.

[13] N. Linial, E. London, and Y. Rabinovich. The geometry of
graphs and some of its algorithmic applications. In IEEE
Symposium on Foundations of Computer Science, pages
577–591, 1994.

[14] B. Moghaddam and A. Pentland. Probabilistic visual learn-
ing for object detection. Technical Report 326, MIT, June
1995.

[15] C. Nölker and H. Ritter. Parametrized SOMs for hand pos-
ture reconstruction. In IJCNN, pages 4139–4144, 2000.

[16] J. Rehg. Visual Analysis of High DOF Articulated Objects
with Application to Hand Tracking. PhD thesis, Electrical
and Computer Eng., Carnegie Mellon University, 1995.

[17] R. Rosales, V. Athitsos, L. Sigal, and S. Sclaroff. 3D hand
pose reconstruction using specialized mappings. In ICCV,
volume 1, pages 378–385, 2001.

[18] J. Segen and S. Kumar. Shadow gestures: 3D hand pose
estimation using a single camera. In CVPR, pages 479–485,
1999.

[19] N. Shimada, K. Kimura, and Y. Shirai. Real-time 3-D hand
posture estimation based on 2-D appearance retrieval using
monocular camera. In Recognition, Analysis and Tracking
of Faces and Gestures in Realtime Systems, pages 23–30,
2001.

[20] B. Stenger, P. Mendonça, and R. Cipolla. Model based 3D
tracking of an articulated hand. In CVPR, volume 2, pages
310–315, 2001.

[21] J. Triesch and C. von der Malsburg. Robotic gesture recog-
nition. In Gesture Workshop, pages 233–244, 1997.

[22] Virtual Technologies, Inc., Palo Alto, CA. VirtualHand Soft-
ware Library Reference Manual, August 1998.

[23] Y. Wu and T. Huang. View-independent recognition of hand
postures. In CVPR, volume 2, pages 88–94, 2000.

[24] Y. Wu, J. Lin, and T. Huang. Capturing natural hand articu-
lation. In ICCV, volume 2, pages 426–432, 2001.

