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ABSTRACT

This paper analyzes the role of dictionary selection in Sparse
Representation-based Classification (SRC). While SRC in-
troduces interesting results in the field of classification, its
performance is highly limited by the number of training sam-
ples to form the classification matrix. Different studies ad-
dressed this issue by using a more compact representation
of the training data in order to achieve higher classifica-
tion speed and accuracy. Representative selection methods
which are analyzed in this paper include Metaface dictio-
nary learning, Fisher Discriminative Dictionary Learning
(FDDL), Sparse Modeling Representative Selection (SMRS),
and random selection of the training samples. The first two
methods build their own dictionaries via an optimization
process while the other two methods select the represen-
tatives directly from the original training samples. These
methods, along with the original method which uses all
training samples to form the classification matrix, were ex-
amined on two face datasets and one digit dataset. The role
of feature extraction was also studied using two dimension-
ality reduction methods, down-sampling and random pro-
jection. The results show that the FDDL method leads
to the best classification accuracy followed by the SMRS
method as the second best. On the other hand, the SMRS
method requires a much smaller learning time which makes
it more appropriate for dynamic situations where the dictio-
nary is regularly updated with new samples. The accuracy
of the Metaface dictionary learning method was specifically
less than the other two methods. As expected, using all the
training samples as the dictionary resulted in the best recog-
nition rates in all the datasets but the classification times for
this approach were far larger than the required time using
any of the three dictionary learning methods.

Categories and Subject Descriptors
G.1.6 [Optimization]: Constrained Optimization; I.5.4 [Ap
plications]: Computer Vision
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1. INTRODUCTION

Classification is one of the most challenging problems in pat-
tern recognition and it is widely used in different areas such
as signal, image and speech processing. Recently, a novel
classification approach, called Sparse Representation based
Classification (SRC), is proposed by Wright et al. [21]. SRC
has been used in different applications such as face recogni-
tion [21], signal classification [12] and activity recognition
[22]. This classification method works based on the emerg-
ing theory of compressive sensing (CS) and sparse signal
representation [6], [5]. In SRC, classification problem is
mapped into an under-determined system of equations which
is solved using ¢'-norm minimization. The sparse solution
determines the class of the unknown test sample. This linear
system of equations can be considered as a dictionary prob-
lem where the original training samples are used to form its
atoms. In [21], face recognition using this method is shown
to achieve high recognition accuracy compared to other di-
mensionality reduction methods, such as Eigen faces [20],
Fisher faces [4] and Laplacian faces [11]. The algorithm pre-
sented in [21] uses the entire training dataset to recognize
each unknown test sample. This implies that the speed of
the recognition task at run time is directly affected by the
number of training samples. Given the high recognition ac-
curacy of SRC, it becomes important to reduce the time
and memory requirements of this method. Improvements in
computational and memory efficiency of the SRC method
makes it a more practical solution to be implemented for
portable devices, and can also significantly decrease the com-
putational load of SRC running on more powerful hardware.
The time complexity of SRC is quadratic with respect to the
number of training samples [7], and thus reducing the num-
ber of training samples by a relatively modest factor can
have a significant effect on running time. It has been sug-
gested that instead of using all samples, or using a random
selection of samples as proposed in [21], one may use an
efficient representation of training samples by means of dic-
tionary learning methods [24],[23] or use subsets of training
samples which efficiently represent each class [8].

A dictionary can be considered as a linear basis where data



has a different (generally sparse) representation. As an ex-
ample, discrete Fourier transform (DFT) and various types
of Wavelet methods can be viewed as unsupervised dictio-
naries. Recently, supervised dictionary learning has drown
interest in the context of machine learning and pattern recog-
nition. In these methods, original training samples are uti-
lized to build a dictionary. Many of dictionary learning ap-
proaches can only represents data efficiently but are not de-
signed for classification tasks [1]. On the other hand, dictio-
naries with classification power can be effectively designed
and used in the SRC framework to increase the time and
memory efficiency of this approach. In this work, the per-
formance of the SRC algorithm is studied in combination
with three recently proposed supervised dictionary learn-
ing methods, Metaface learning [24], Fisher Discriminative
Dictionary Learning (FDDL)[23] and Sparse Modeling Rep-
resentative Selection (SMRS)[8]. In this paper the experi-
ments are conducted on a face recognition framework with
different datasets and the results are compared with the orig-
inal SRC method where a random selection of training data
are used directly as dictionary elements.

The rest of this paper is organized as follows:. In sec-
tion 2 the sparse representation classification algorithm is
briefly reviewed , In section 3, general dictionary learn-
ing method is described and three methods of dictionary
learning (Metaface learning, Fisher Discriminative Dictio-
nary Learning (FDDL) and Sparse Modeling Representative
Selection (SMRS)) are described. The results of the exper-
iments and the details of the datasets are reported in the
section 4. This section also elaborates on how different dic-
tionary learning methods affect SRC accuracy.

2. SPARSE REPRESENTATION BASED CLAS-

SIFICATION

The system of linear equations t = Ds, where D € R™*"
is an m by n matrix, is called an under-determined system
of equations if m < n. In this system, the measurement
vector t, is a column vector with m entries, and t which is a
column vector with n entries is the vector to be recovered.
The solution t to this equation is not unique and the sparsest
solution to this equation can be obtained by solving the
following optimization problem:

Sp = argmin ||s||, subject to Ds =t, (1)

where ||.||, denotes the ell’-norm, which counts the number
of non-zero elements in vector s. Finding the solution for
s, using (1) is an NP-hard problem because all the subsets
of the entries for s should be considered [2]. Based on the
theory of compressive sensing, if the solution Sy is sparse
while satisfying certain constraints [6], the solution of the
optimization problem (1) is equal to the solution of the fol-
lowing #'-norm minimization problem:

§1 = argmin ||s||; subject to Ds =s. (2)

In fact, vector 81 should not necessarily be sparse to be re-
covered by (2). It may be sparse in some domain (other than
S1’s original domain) [3]. For instance, vector 81, could be a
general non-sparse signal which has a sparse representation
in frequency or Wavelet domain. In practice, due to the ex-
istence of noise in measurements, the solution to t = Ds is
not exact. In other words, the system of linear equations,
t = Ds should be modified as t = Ds + n, where n is an

n dimensional noise vector. In this case, the optimization
problem (2) may be reformulated as follows:

S1 = argmin ||s||; subject to ||Ds —t||, <€, (3)

where, € > |nl|, , i.e. € is larger than the energy of the
noise. The idea of classification in the context of sparse
representation is to set up a system of linear equations,
t = Vs, where V € R™*" represents the original train-
ing data which totally contains n samples. Each column
of the matrix V' is an m dimensional training sample vec-
tor v . Vector t is an m dimensional test sample which
is unknown and s is the coefficient vector representing the
test sample as a linear combination of the training sam-
ples. Training samples for all ¢ classes can be considered as
V =[Vi,Va,..., V], where each V; € R™*™ is a sub-matrix
contains n; training samples which spans a subspace for class
i,1.e. Vi =[vi1,Vi2,...,Vin,;]. In an ideal situation, a test
sample of this class, t; € R™ can be represented as a linear
combination of the training samples as follows:

ti = si1vi,1 + Si2Vi2 + 0 + Sin Vion, = Viss, (4)

where s; € R™ is the coefficient vector for class ¢. Consid-
ering all n = n1 4+ na2 + -+ - 4+ n, training samples from all
c classes, the entire dictionary could be represented by the
matrix V € R™*" where

V= [‘/17‘/27--'7‘/6}
= [V1,1,V1,2, o3 Ving, V21,00, V2 ng, ... ,Vc’nc] . (5)

The linear system shown in (4) can be represented in matrix
form as

t=Vs, (6)

where s = [s1,82,...,5:]%. Ideally, the solution to equation
(6) for a test sample from class i i.e. t; will be z; which is
a sparse vector whose entries are mostly zero except for the
ones corresponding to " class:

z; =[0,0,...,0,8i1,...,8in;,0,0,...,0]". (7

If m < n, i.e. the dimension of the data is smaller than the
total number of training samples, equation (6) represents
an under-determined system. Assuming that the training
samples from one class represent a subspace with a lower
dimension than m, it is possible to recover s by solving ¢'-
norm minimization problem (2). Having the recovered vec-
tor, s, it is possible to find the class of the given test sample.
This classification method is called Sparse Representation-
based Classification (SRC) [21]. In real applications, due to
the existence of measurement noise, both test samples and
training samples (dictionary atoms) are noisy and it may
not be possible to represent a test sample only as a linear
combination of training samples which belong to the same
class. To address this problem, the constraint on the ¢!-
norm minimization problem is changed to consider the noise
effect, as described earlier in equation (3). Another consider-
ation in SRC algorithm is the dimensionality of the data. if
data dimension is large, then it is necessary to have a large
number of training samples for equation (6) to be under-
determined. For example, in a face recognition framework,
if training data consists of face images with the resolution
of 100 x 100 , then the training matrix V will have 10* rows
which implies that the number of training samples must be
greater than 10* to have an under-determined system of lin-
ear equations. In order to lower the number of rows in the



training matrix, it is possible to reduce the dimensionality
of the original data, m, into d < m using a proper feature
extraction algorithm. Many of feature extraction algorithms
consist of linear transformations which may be represented
as a matrix multiplication. In this case, the equation (6)
could be rewritten as follows:

t=Rt=RDs="Vs, (8)

where t € R? represents the extracted feature vector of the
original unknown test sample t, and R € R>*™ with d <« m,
is a feature extraction matrix. V € R?*" is the training
matrix with reduced dimensionality. Using V as the training
matrix, equation (3) can be reformulated as:

§1 = argmin ||s||; subject to H?s —EH <e. 9)
2
Different dimensionality reduction matrices such as random
projection and down-sampling can be utilized as R in equa-
tion (9).

3. DICTIONARY LEARNING METHODS

Dictionary learning (DL) is a method for representing train-
ing data to make it more efficient for coding and further pro-
cessing and it is widely used in different applications such
as computer vision and signal processing. In most of these
applications, dictionaries are designed such that the training
set could be represented as sparse as possible. An effective
approach to build a dictionary is to use the training samples
in dictionary learning algorithm [17]. For training samples
V', one could end up with a dictionary D with solving the
following optimization problem:

n
argminz Vi — Dxil3 + M |xill,

Dx; 4
:argrilinz v - DXH?: + A 1X1,
; i=1

st ||dill3 <1L,Vi=1,2,...,n, (10)

where X = [x1,X2,...,Xn] is the coefficient matrix which
can be considered as the representation of training samples
V over the dictionary D. There are several proposed dictio-
nary learning methods to create dictionaries which are also
effective for classification tasks [16],[25].

as described in section 2 an important part of the SRC al-
gorithm is the training matrix V' which formed simply by
adding the vectorized version of the training samples. De-
spite of the interesting classification results in [21], SRC
would not be computationally efficient if the number of train-
ing samples is large. Building a dictionary by manual se-
lection from the training samples as suggested in [21] is
also non-optimal, because one might select training samples
which are not good representatives for the training data.
Considering that many of training samples from one class
might be redundant and contain similar information, it is
possible to find a more efficient matrix with less elements. If
the training matrix V' in equation (6) is replaced by a smaller
size dictionary D which is as representative and discrimina-
tive of the training data, classification performance will be
increased while maintaining the accuracy. Different dictio-
nary learning algorithms are used along with SRC. There are
two main category of methods presented in this area. Some
of these methods do not create a sparse coefficient vector

to be used directly for classification, i.e. dictionaries built
by this methods are not convenient for classification. Since
the recovered vector in SRC algorithm needs some further
processing to detect the unknown sample class [16],[25]. In
contrast, a number of methods are proposed which try to in-
corporate the discriminative power of a dictionary into the
solution of the optimization function [24],(23],[(8]. In this pa-
per, we study the methods from second group and evaluate
the performance of these algorithms compared to each other.

3.1 Metaface Dictionary Learning
Yang et al. [24] introduced a dictionary learning method
based on metagenes in gene expression data analysis, and
used it along with SRC algorithm in a face recognition frame-
work. In this approach, dictionary D is considered to be a
collection of sub-dictionaries representing each class sepa-
rately, i.e. D = [D1,Da,...,D.], where each D; is learned
for each class i separately by using training samples from
that class, V;. Atoms in the sub-dictionary D; are denoted
by ds,; and D; = [ds1,ds2,...,d;ip], where p < n. Each
atom in the dictionary required to be a unit vector, i.e.
d;'I:jdi’j = 1,Vi,j. Metaface dictionary will be determined
by solving the following optimization problem:

argmin||V; — D X[ 5+ || X: |, s.t. dfdiy = 1,Vi, 5, (11)

D;, X

where X; is the representation of the training data V; over
the sub-dictionary D;. X is the regularization parameter
and ||| indicates the Frobenius norm of matrices. Equa-
tion (11) is a multi-variable optimization problem and could
be solved by alternatively optimizing D; and X;. The over-
all optimization steps is as follows (details for each step are
described in [24]):

Step 1: Each column of D; is initialized as a random vector
with unit /2 norm.

Step 2: Fix D; and solve for X;.

Step 3: Fix X; and update D,;.

Step 4: If maximum number of iterations or an acceptable
error rate are not met, return to step 2

The above algorithm should be conducted for each indi-
vidual class ¢ (i = 1,2,...,¢) to form the final dictionary
D = [Dy,Ds,...,D.]. This dictionary could be used in
SRC framework to perform the classification task.

3.2 Fisher Discrimination Dictionary Learn-
ing

Another study on using dictionary learning along with SRC
framework is done in [23]. The so-called Fisher Discrimina-
tion Dictionary Learning (FDDL) tries to learn a dictionary
which contains atoms with class labels and in the meantime,
utilizes Fisher discrimination criterion to make the dictio-
nary more discriminative. To satisfy this property, FDDL
uses the following optimization problem:

argmin {r(V, D, X) + A1 | X[, + A2 f(X)}, (12)
D, X

where V = [V1, Va,..., V] and X = [X1, X2, ..., X.] are the
training and coefficient matrices for all classes (1,2,...,c¢)
respectively, and D is the final dictionary as described in sec-
tion 3.1. A1 and A2 are regularization parameters, r(V, D, X)
is the discriminative fidelity term, and f(z) is the Fisher



discrimination constraint term. Discriminative fidelity term
imposes the following 3 constraints on the dictionary and
coeflicient matrix for class i (i = 1,2,...,¢):

C1: The dictionary D, should be a good representative of
the training samples from class 4, i.e. V; with coefficient ma-
trix Xj;.

C2: Sub-dictionary D; along with coefficient entries associ-
ated with class 7 (X;), should be a good representative for
Vi.

C3: Coefficient entries associated with class j # i (X7),
should be close to zero to make D;X; small.

Mathematical interpretation of the above constraints results
in the following formula for discriminative fidelity term:

T(AivDaXi) =

1A: — DX,|% + HAz- — DiX} (13)

2
F

2 c )
. J
Y HDJXi
j=1
FE

Fisher discriminative criterion increases dictionary discrim-
inative power by minimizing the within-class scatter and
maximizing the between-class scatter of X. Based on this
criteria, the discriminative term, f(X) in equation (12) for
class ¢ can be formulated as equation (14) (Details are pro-
vided in [23]).

c
2 2 2
Fi(X) = 1 Xi = Mil| 3 = D I My — M5 + |1 X3, (14)
k=1
where M, and M are the mean vector matrices with ng
columns whose columns are mean vectors of X; and X re-
spectively. The optimization functions (13) and (14) are
convex [23], so the optimization function (12) can be solved

by a similar approach of 3.1, i.e. alternatively optimization
of D and X.

Step 1: Each column of D; is initialized as a random vector
with unit /2 norm.

Step 2: Fix D; and solve for X for all classes (1 = 1,2, ..., ¢).

Step 3: Fix X; and update D; for all sub-dictionaries (i =
1,2,...,¢).

Step 4: If maximum number of iterations or an acceptable
error rate are not met, return to step 2

The solution to (12) will result in a discriminative struc-
tured dictionary whose atoms are classified and labelled for
their associated class. This dictionary is used as the training
matrix in SRC algorithm.

3.3 Sparse Modeling Representative Selection
While Metaface and FDDL methods try to build a new dic-
tionary by processing and modifying the training data, the
Sparse Modeling Representative Selection (SMRS) proposes
to form the dictionary by selecting its atoms from the orig-
inal training samples. Representatives for each class i of
training data, are selected using the following optimization
problem:

1
argmin\ || X,|, .+ 5 Vi = ViX,||%, st. 17X, =17, (15)
X; ’

where || X, , = >0, [[X:i(j, )|, where [|XG]|, , is the sum
of ¢%-norms of the rows of C;, and q is selected to be greater

Figure 1: SMRS(left), Metaface(middle) and FDDL
(bottom) representatives selected on subjects 3,
4514 and 8 from Yale B (top), FRGC (middle), and
Cedar Buffalo (bottom) datasets.

than one to make the optimization problem convex [8]. Scalar
) is the regularization parameter which affects the number of
selected representatives and the constraint term 17 X; =17,
enforces the solution to be translation invariant. The opti-
mization problem (15) can be solved using Alternating Di-
rection Method of Multipliers (ADMM) method from [9].
The selected representatives, which are directly used as dic-
tionary atoms, are the columns of training samples V; which
have non-zero corresponding row in the coefficient matrix
X;.

The above scheme also indicates which samples are more in-
formative to represent class ¢ by directly comparing ¢?-norms
of the selected samples. Moreover, it is possible to detect
outliers by checking the coefficient matrix X. The rows of
X which corresponds to outliers should have a few non-zero
entries. Based on this fact, a measure called row-sparsity
index (rsi) is introduced in [8] which is used for removing
outlier representatives. Some discussions are also made in
[8] on how to efficiently update the representatives for each
class when new training samples are in introduced.

Figure 1 shows a column of SMRS, Metaface and FDDL dic-
tionaries for three different datasets which are introduced in
section 4. As can be seen, SMRS dictionary (left column)
selected some of the original data as representatives. On the
other hand, Metaface and FDDL methods, learn their own
representatives which are different from original images.

4. EXPERIMENTS

In this section, the classification performance of the SRC
method is evaluated using different dictionaries and datasets.
In order to compare the results of the three dictionary meth-
ods, described in the previous section, the number of atoms
in the dictionaries should be equal. The Metaface and the



Table 1: Recognition rate (using down-
sampling(DS) and random projection(RP)) and
learning time of using different dictionary learning

methods on Extended Yale B face dataset

Accuracy | Accuracy | Learn Time | Test Time

% (DS) % (RP) (sec) (sec)

Random 85.79 92.49 N/A 0.051

SMRS 91.53 93.25 20 0.050

Metaface 86.60 88.17 1300 0.051

FDDL 92.52 94.04 19400 0.049

All Data 97.70 98.37 N/A 0.390

FDDL methods allow the user to directly control the num-
ber of dictionary atoms. However, in the SMRS method the
number of dictionary atoms are affected by the nature of
the training data and the parameter X in the equation (15).
Hence, we first run the SMRS method with a given param-
eter \ on all classes. In practice, a second parameter o > 0
is selected to compute A via A = Ao/« where Ao depends on
the nature of the data [8]. ADMM method is employed to
solve the optimization problem (15), as described in section
3.3.

Once the SMRS method selects the number of representa-
tives for each class, then the same number of atoms is used
in the second and third experiments with the other two dic-
tionary learning methods, i.e. Metaface and the FDDL. The
0*-regularized least square problem (11) is alternatively op-
timized for dictionary and coefficients by the interior-point
method presented in [14] and optimization problem (12) is
solved alternatively using Metaface approach [24] and it-
erative projection method presented in [19]. In order to
compare the results of the three dictionary learning meth-
ods with the original SRC method, the forth experiment
was performed where the dictionary atoms were randomly
selected directly from the training set and used for the clas-
sification task. This experiment, i.e. the random selection
of the dictionary atoms from the original training data, was
independently repeated for 10 times and an average recog-
nition rate was calculated. Finally, in the fifth experiment,
all the training images were used directly to form the largest
possible dictionary for classification. The results of this last
experiment was compared to the first four experiments.
different popular datasets, Cedar Buffalo digits, FRGC, and
Yale B face datasets, were used to compare the performance
of the aforementioned dictionary learning methods. The re-
sults are reported in the following sections.

4.1 Yale B Face Dataset

The first face dataset used for the experiments were se-
lected from the Extended Yale B face dataset [15], [10].
This dataset contains a total of 2414 face images from 38
subjects which are cropped and normalized into 192 x 168
frontal face images. Images are captured under various con-
trolled lighting conditions in the laboratory. Half of these
images (1207) were selected randomly for training and the
remaining were used as test samples. In the first experi-
ment, SMRS algorithm with a fixed predetermined A for all
classes was applied on training images to select the repre-
sentatives for the dictionary. This algorithm selected 8,9,10
or 11(with an average number of 9.58) representatives for
each class (364 total representatives). Total running time for

SMRS algorithm to build the dictionary was around 20 sec-
onds. After this step, original image vectors of length 32256
were down-sampled into 120 dimensional vectors. Recogni-
tion rate using these representatives in an SRC framework is
91.53% while the average classification time for an unknown
input is 50.87 milliseconds. The same number of representa-
tives for each class were forced for the Metaface dictionary
learning method while regularization parameter was selected
to be A = 0.001. Total running time for this algorithm to
build the dictionary was around 1300 seconds which is far
larger than the time to learn SMRS dictionary. Recognition
rate for SRC using a down-sampled version of the Metaface
dictionary (similar approach to the first experiment) was
86.60% which shows a 5% decline in recognition rate com-
paring to the SMRS dictionary learning method. Since SRC
for both methods uses a dictionary of the same size, the av-
erage single classification time for both SMRS and Metaface
methods are comparable, 50.87 and 51.12 milliseconds cor-
respondingly.

The experiment was repeated using FDDL dictionary learn-
ing method with the same number of representatives for each
class. The process time for training the FDDL dictionary
was 19400 seconds which was much more than the learn-
ing time of the other two methods. For the same feature
extraction approach (i.e. down-sampling), SRC recognition
rate was 92.52% which is the best accuracy among all three
methods.

In order to test the effect of feature extraction on classifi-
cation results, the above experiments were repeated using
a random projection feature extraction which projects face
images into a 120 dimensional space. SRC was repeated 10
times with different random projection matrices and the av-
erage recognition rate using SMRS, Metaface and FDDL dic-
tionary learning methods were 93.25%,88.17% and 94.04%.
Table 1 shows the summary of the learning and classification
results for the Extended Yale B dataset.

4.2 FRGC Face Dataset

The second face dataset used for the experiments consists of
2D front face images from the FRGC dataset [18]. Images in
this dataset are different from Yale B dataset because rather
than having various lighting conditions, they are captured
in different times, poses and situations. This dataset con-
tains 36817 face images from 535 subjects (i.e., 535 classes).
Among all classes, 100 classes were randomly selected for
the experiments. The original resolution of images was ei-
ther 1704 x 2272 or 1200 x 1600. All images were converted
to gray images, normalized and cropped to 60 by 60 pixels.
For each class, 80 and 30 face images were randomly se-

Table 2: Recognition rate (using down-
sampling(DS) and random projection(RP)) and
learning time of using different dictionary learning
methods on FRGC face dataset

Accuracy | Accuracy | Learn Time | Test Time
% (DS) % (RP) (sec) (sec)
Random 90.23 83.10 N/A 0.32
SMRS 94.30 85.76 38 0.32
Metaface 90.77 80.65 8200 0.31
FDDL 94.10 88.02 91000 0.34
All Data 96.80 97.70 N/A 15.14




Table 3: Recognition rate (using down-
sampling(DS) and random projection(RP)) and
learning time of using different dictionary learning
methods on Cedar Buffalo digit dataset

Accuracy | Accuracy | Learn Time | Test Time
% (DS) % (RP) (sec) (sec)
Random 82.49 76.20 N/A 0.02
SMRS 88.82 80.83 85 0.02
Metaface 85.93 79.40 5377 0.02
FDDL 90.16 85.08 2298 0.02
All Data 97.50 95.58 N/A 5.22

lected as training and testing sets respectively which results
in a total number of 8000 training images and 3000 test im-
ages (images in testing set were selected to be different from
training images).

SMRS algorithm was employed first to select training rep-
resentatives and form the first dictionary. The parameter A
was selected such that the average number of representatives
was 12.5 with the total dictionary learning running time of
38 seconds. The same number of representatives were forced
to Metaface and FDDL dictionary learning methods which
had far longer learning processes (8200 and 91000 seconds
respectively).

Learned dictionaries using the three methods were used along
with a down-sampling feature extraction matrix for classifi-
cation. This dimensionality reduction changes sample vec-
tors length from 3600 to 100. Recognition rates using SMRS,
Metaface and FDDL dictionaries were 94.30%, 90.77% and
94.10%, respectively. For this dataset, similar to Yale B
dataset, SRC accuracy using SMRS and FDDL dictionaries
performed better comparing to when Metaface dictionary
was employed. The average recognition rate were 85.76%,
80.65% and 88.02% for SMRS, Metaface and FDDL dictio-
naries respectively. The results of using different dictionary
learning methods for classification of FRGC face dataset are
summarized in Table 2.

4.3 Cedar Buffalo Digits Dataset

To evaluate different dictionary learning methods in another
context, a set of experiments were conducted on handwritten
digits dataset from the Cedar Buffalo binary digits dataset
(USPS) [13]. This dataset contains 11000 examples of 8
bits, 16 x 16 digit bitmaps (1100 images for each of digits
0,1,...,9). Among these images, Half of the images in each
class were selected as training samples and the rest were
used to test the classification algorithm.

At the first step, SMRS dictionary learning was employed
to build the dictionary matrix. Parameter A\ was selected to
create an average of 24.7 representatives per class and the
dictionary learning running time was 85 seconds. Similar
to face datasets, Metaface and FDDL dictionary learning
methods were applied with the same number of represen-
tatives per class as SMRS dictionary. Dictionary learning
running time was 5377 and 2298 seconds for Metaface and
FDDL learning methods respectively.

Down-sampling and random projection were used to reduce
dimensionality of the data from 256 to 64. Recognition rates
using down-sampled SMRS, Metaface and FDDL dictionar-
ies were 88.82%, 85.93% and 90.16% respectively while the
average recognition rate over 10 runs of random projection
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Figure 2: Recognition accuracy on different datasets
using dimensionality reduction methods down-
sampling(DS) and random projection(RP).

dimensionality reduction were reported as 80.83%, 79.40%
and 85.08% respectively. An average testing time of 24 mil-
liseconds was reported for each digit test sample in the above
classification framework. Table 3 shows recognition rate
and learning time of SMRS, Metaface and FDDL dictionary
learning methods as well as using all and random selection
of training images for the digit recognition problem.

Figure 2 shows SRC accuracy using different dictionary learn-
ing and dimensionality reduction methods on the three se-
lected datasets. As can be seen in this figure, the SRC has
the best recognition rate when the FDDL learning method
is used to form the dictionary. Further discussions on the
results is presented in section 5.

S. DISCUSSION AND CONCLUSION

This paper investigated the influence of the three differ-
ent dictionary learning methods on the performance of the
sparse representation-based classification (SRC). The origi-
nal SRC algorithm which is proposed in [21], works based
on the assumption that a test sample from a particular class
can be represented as a linear combination of the training
samples from the same class. Therefore, an unknown test
sample can be recognized by recovering the sparse coefficient
vector which is a representation of the test sample over train-
ing images from all classes. ¢!-norm optimization is utilized
to solve this reconstruction problem. Using all the training
samples makes the optimization process slow and a random
selection from the training samples is also inefficient. To
address this problem, dictionary learning methods can be
utilized to reduce the number of representatives for each
class. Dictionary learning methods which are evaluated in
this study include Metaface, Fisher Discriminative Dictio-
nary Learning (FDDL) and Sparse Modeling Representative
Selection (SMRS). SMRS method selects the best represen-
tatives directly from training dataset while the other two
methods build their representatives for each class by process-
ing the original training samples while optimizing an objec-
tive function. The learned dictionaries from the three afore-
mentioned methods were used to feed the SRC algorithm
for classification of two face and one digit datasets. The ac-
curacy and the learning performance of these methods were
compared. Two dimensionality reduction algorithms (down-
sampling and random projection) were also used in order



to make a better comparison of the accuracy of the meth-
ods. From the learning point of view, SMRS was the fastest
method. While Metaface and FDDL methods needed more
than an hour to learn the dictionary, the learning time for
SMRS was less than a minute. This difference in the learning
phase make SMRS method the best choice for dynamic sit-
uations where the dictionary is regularly updated with new
samples. While FDDL method introduced the longest learn-
ing process on Yale B and FRGC face datasets, Metaface
learning time was the largest one in the digit dataset. This
fact shows that Metaface learning time highly depends on
the number of training images per class. On the other hand,
FDDL needs more time to learn when number of classes and
the dimensionality of the data is higher.

Investigation of the results for the three different dictio-
nary learning methods show that selecting the FDDL leads
to the best recognition rate for the SRC method (except
for one case where SMRS had 0.2% better recognition rate
than FDDL on FRGC face dataset). The recognition rates
of using the SMRS were generally slightly lower than the
FDDL. The Metaface dictionary learning method accuracy
was specifically less than the other two and even in some
cases it was worse than a simple random selection of the
training data as the dictionary (Using random projection
on Yale B and FRGC datasets). As expected, using all the
training samples as the dictionary resulted in the best recog-
nition rates in all the datasets but the classification times
for this approach were far larger than the required time for
any one of the three dictionary learning methods.

Analysis of the results for the down-sampling and random

projection feature extraction methods show that for the FRGC

and Cedar datasets, down-sampling features were more ef-
fective than random projection using all 4 representative se-
lection methods but this is not the case for Yale B dataset.
This difference may be the result of the characteristics of
these datasets. Yale B dataset contains face images which
are similar in pose and expressions but only captured in
different controlled lighting conditions while the other two
datasets were not captured within a controlled environment.
As a summary, one can conclude that using learned dictio-
naries in an SRC framework, leads to faster classification
process comparing to when all training images are used to
form the SRC linear system of equation. Among the se-
lected dictionary methods, FDDL introduced the highest
recognition rate while its learning time was much higher
than SMRS. This makes FDDL to be more applicable in off-
line applications and SMRS to be more suitable in dynamic
learning applications.
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